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Abstract

Since the origin of virtual machine monitors in the 1960s, virtual hardware has often been

designed with “impure” interfaces different from physical hardware interfaces. Paravirtual-

ization, as this is now termed, is often used to simplify VMMs and boost VM performance.

This thesis explores tradeoffs in a rarely seen form of paravirtual interface, where the vir-

tual interface operates at a higher level of abstraction than the common hardware interface.

We in particular examine the effects of providing a BSD socket-like interface to a VM in-

stead of an Ethernet interface, and the effects of providing a file system interface instead of

a block device interface.

Our experiments show that higher-level (“extreme”) paravirtualization has direct ben-

efits for sharing, security, and modularity. We also show that our approach requires little

or no change to existing VMMs and operating systems. Given the availability of processor

cores, it has minimal performance cost: 3% or less in every case for our paravirtual net-

work stack, and under 4% for file system macro-benchmarks. In special cases, we even

demonstrate speed-ups.

We further extend the extreme paravirtualization approach for virtual storage. Virtual

disks have many attractive properties, such as a simple, powerful versioning model and an

architecture that makes it easy to create and economically store large numbers of VMs.

They also suffer from serious shortcomings: low-level isolation prevents shared access

to storage, versioning takes place at the granularity of a whole virtual disk, and lack of

structure obstructs searching or retrieving data. An extreme paravirtualization interface to

storage aids sharing, but not their other shortcomings.

Therefore, this thesis proposes the concept of a virtualization aware file system (VAFS)

that combines the features of a virtual disk with those of a distributed file system. A VAFS

iv



extends a conventional distributed file system with versioning, access control, and discon-

nected operation features resembling those available from virtual disks. This gains the

benefits of virtual disks, without compromising usability, security, or ease of management.
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Chapter 1

Introduction

Virtual machine monitors (VMMs) are in increasingly common use. We envision a time

when, with few exceptions, all desktop and server systems will run on top of a VMM. As

virtual environments rise to ubiquity, the virtual hardware interfaces between a VMM and

each operating system on top of it in a virtual machine (VMs) become at least as important

as the physical hardware interfaces accessed by the VMM. Virtual interfaces may even have

greater importance than physical interfaces: only a single VMM interacts with physical

hardware at a given time, but that VMM may simultaneously host a large number of VMs.

From the origin of VMMs in the 1960s, the virtual hardware interfaces provided by

many VMMs have been specialized to the virtual environment. These kinds of special-

ization, called paravirtualization, have most commonly aimed to simplify VMM imple-

mentation, to improve performance or reduce resource requirements, or to improve the

user experience. The current resurgence of VMMs has also employed specialized virtual

hardware for all of these reasons.

Empirically, these interface specializations, especially those for modern operating sys-

tems, tend to have three properties in common. First, they tend to be visible only to op-

erating systems, not to application programs, due to VMM authors’ strong motivations to

maintain compatibility with existing applications. Second, they tend to limit the extent of

needed changes so that they fit within an existing interface layer in OS kernels, to ensure

clean integration with operating systems. Finally, in most cases these specialized virtual
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CHAPTER 1. INTRODUCTION 2

interfaces are designed by streamlining, simplifying, or subsetting a common physical in-

terface. For example, rather than simulating an Ethernet controller with an interface for a

legacy I/O bus, VMMs such as Xen provide a streamlined virtual Ethernet interface with

shared memory transmit and receive rings.

This thesis investigates a more rarely seen form of virtual interface specialization that

shares the first two of these properties—application compatibility and limited changes to

operating systems—but not the third. In particular, the virtual interfaces we propose do not

resemble common physical interfaces, but instead operate at a higher level of abstraction.

The direct benefits of these higher-level interfaces include manageability, security, and

improved potential for sharing. Regarding manageability, a device module can be repaired

or replaced separately from the VM that it serves, among other benefits. As for security,

interposing at a higher level allows us to move all the code implementing the lower level

parts of the virtual device into a new domain of trust, which allows us to better secure a

system or a network, or to shrink the trusted code base of an operating system. Finally, by

pulling lower-level code out of the operating system into another virtualization layer, we

enable that layer to serve multiple client VMs. This enables sharing of resources such as

file systems and network connections among VMs in ways not easily achievable previously.

(When isolation is a priority, resources need not be shared.)

Our higher-level virtual interfaces also increase the modularity of operating systems.

The resulting increase in modularity reaps the benefits traditionally claimed by other modu-

lar OS approaches, e.g. microkernels [1], such as increasing the operating system’s flexibil-

ity, extensibility, maintainability, security, and robustness. Unlike traditional microkernels,

the new structure falls out from an evolutionary approach that permits a gradual migra-

tion from existing monolithic operating systems to a more modular, decomposed operating

system.

This thesis studies two kinds of higher-level virtual interfaces, which we call “extreme

paravirtualization”:

• Virtual storage, which is usually provided in the form of a virtual hard disk. We

study supplying the VM a higher level of abstraction, that of a virtual file system.

The resulting storage is easier to share, administer, search, and revise.
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• Virtual networking, which is usually provided in the form of a virtual Ethernet inter-

face. We study supplying the VM a higher level interface, that of a virtual TCP/IP

stack. This yields benefits in sharing, security, and modularity.

File systems and networking stacks are large pieces of code, often much larger than a

simple paravirtualizing virtual machine monitor. Thus, instead of integrating them into the

VMM, we implemented each one in a separate, isolated service virtual machine. Our pro-

totype service VMs in turn implement the desired functionality in terms of the customary

lower-level virtual interface: a virtual Ethernet interface for networking, a virtual disk for

storage.

This thesis further extends the extreme paravirtualization approach in the case of vir-

tual storage. On their own, virtual disks have many attractive properties as the basis of

VM storage, such as a simple, powerful versioning model and an architecture that makes it

easy to create and economically store large numbers of VMs. Unfortunately, they also suf-

fer from serious shortcomings: their low-level isolation prevents shared access to storage,

versioning takes place at the granularity of a whole virtual disk, and their lack of structure

obstructs searching or retrieving data in their version histories. A higher-level virtual inter-

face to storage aids sharing virtual disks, but it does not help with their other shortcomings.

Therefore, this thesis proposes the concept of a virtualization aware file system (VAFS)

that combines the features of a virtual disk with those of a distributed file system. A VAFS

extends a conventional distributed file system with versioning, access control, and discon-

nected operation features resembling those available from virtual disks. This gains the

benefits of virtual disks, without compromising usability, security, or ease of management.

Difficulty in implementation or poor performance could be seen as strikes against ex-

treme paravirtualization, but neither is a serious issue in practice. Implementation is eased

by the way that modern operating systems are designed to support multiple implementa-

tions of components. We simply implemented our own components that work by commu-

nicating with a service VM. In fact, no kernel changes at all were required to support our

network and file system prototype implementations under Linux, only addition of our ker-

nel modules. As for performance, it is aided by the advent of multi-core and multi-threaded

CPUs, which provide shared caches that are useful for high-speed communication among
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VMs. The speed penalty is thus minimal even in our relatively unoptimized implementa-

tion: 3% or less for our network stack and under 4% for file system macro-benchmarks. In

special cases, we even demonstrate speed-ups.

1.1 Contributions

This thesis makes the following contributions:

• We propose that virtual machine systems offer virtual interfaces at a significantly

higher level of abstraction than physical interfaces. We call this extreme paravirtual-

ization.

• We detail benefits of extreme paravirtualization, such as fine-grained sharing of ser-

vices among VMs, increased security, and increased modularity. In turn, increased

modularity has potential for improved flexibility, extensibility, maintainability, secu-

rity, and robustness.

• We show that extreme paravirtualization can be implemented for network stacks and

file systems in existing virtual machine monitors and operating systems with little or

no change to either. We demonstrate that the performance penalty is under 4% for

our prototype implementations.

• We speculate on use of extreme paravirtualization as a primitive to gradually evolve

monolithic OSes into a more modular form that offers the same benefits as other

modular OS structures, such as microkernels. We show how such an evolution could

avoid a difficult transition for users and administrators at any single point.

• We further propose a model for virtual storage, called a virtualization aware file

system (VAFS). A VAFS combines the powerful versioning features of virtual disks

with the fine-grained structure and access control of distributed file systems.

• We explore trade-offs in VAFS design. The hierarchical nature of VM versioning

informs a file system design with hierarchically versioned files and directories. Dif-

fering expectations for VM and distributed file system access control lead to multiple
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orthogonal forms of access control. We also describe the need for and implementa-

tion strategy for disconnected operation.

1.2 Terminology

We adopt the following terminology for virtual machines. A virtual operating system run-

ning inside a virtual machine is a guest OS. When a VMM runs on top of a general-purpose

operating system, that operating system is the host OS.

1.3 Organization

The remainder of this thesis is organized as follows. The following chapter chronicles the

history of virtualization from its inception, with emphasis on the history of interfaces to vir-

tual hardware, and contrasts these interfaces with those proposed by this thesis. Chapter 3

motivates our work. Chapter 4 describes our proposed extreme paravirtualization interfaces

for networking and file system access and implementation details of our prototypes for each

device module. Chapter 5 details our proposal for virtualization aware file systems, includ-

ing Ventana, our VAFS prototype. In Chapter 6, we evaluate performance and other aspects

of our prototypes. Chapter 7 presents related and future work, and Chapter 8 concludes.



Chapter 2

Virtual Interfaces

This chapter chronicles the history of virtualization from its inception, with emphasis on the

history of interfaces to virtual hardware, and contrasts these interfaces with those proposed

by this thesis.

2.1 Roots of Virtualization in Time-Sharing

The invention of the virtual machine monitor in the 1960s can be seen as a logical conse-

quence of trends in evolution of computers and their use that began in the 1950s. Computers

in the 1950s were designed to run only a single program at a time. Until the invention of in-

terrupts in 1956, in fact, overlapping computation with I/O often required the programmer

to carefully break computations into code segments whose length matched the speed of the

I/O hardware [2]. This can be further seen in that, until approximately 1960, the term time-

sharing meant multiprogramming, or simply overlapping computation with I/O [3, 4, 5].

A single-user architecture meant that each computer’s time had to be allotted to users

according to some policy. Two very different policy models dominated [6, 7]. In the first,

known as the open shop or interactive model, users received exclusive use of a computer

for a period of time (often signed up for in advance). Any bugs in the user’s program could

then be fixed immediately upon discovery, but the computer was idle during user “think

time.” Furthermore, the number of users who could use a computer during a fixed amount

of time increased only minimally as the speed and size of the computer increased. Faster

6
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and larger computers were also more expensive and therefore on these machines the user

overhead had a higher opportunity cost. Hence only the smaller computers of the era tended

to be available interactively.

In the contrasting closed shop or batch model, users prepared their job requests off-

line and added them to an off-line queue. The machine was fed a new program from the

queue, by its professional operators, as soon as it completed the previous one. Batch pro-

cessing kept the machine running at its maximum capacity and scaled well with improve-

ments to the machine’s speed. The difficulty of debugging, however, increased because

the turnaround time from job submission to completion was typically measured in hours or

days [8]. An article about virtual machines in 1970 contrasted the two models this way [9]:

Remember the bad old days when you could sit at the console and develop

programs without being bothered by a horde of time-hungry types? Then

things got worse and they closed the door and either you took a 24 or 48 hour

turnaround, or they let you have 15 minutes at 1:15 AM on Sunday night.

The weaknesses in both models became increasingly apparent as computer design pro-

gressed to faster and larger machines. Demand for computer time tended to grow faster

than its supply, so efficient use of computer time became paramount. Moreover, the in-

creasing size of the problems that could be solved by computer led to larger, more complex

programs, which required extensive debugging and further increased demand [5]. These

factors pushed in contradictory directions: increasing demand called for the increased ma-

chine efficiency of the batch model, but human efficiency in debugging required on-line

interaction [6].

Additionally, on the horizon were proposed uses of computers for experiments in inter-

active teaching and learning, computation as a public utility, “man-computer symbiosis,”

and other forms of “man-machine interaction” [5, 10, 6, 11, 12]. Some believed as early

as 1962 that a time would come when access to a computer would be universally impor-

tant [13]:

We can look forward to the time when any student from grade school through

graduate school who doesn’t get two hours a day at the console will be consid-

ered intellectually deprived—and will not like it.
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These future needs could not be fit into either model. A new way was needed.

Interactive time-sharing was the answer. It achieved human efficiency, by providing a

response time for program debugging and other purposes on the order of seconds or minutes

instead of hours, as well as machine efficiency, by sustaining the machine’s CPU and I/O

utilization at or near their limits.

Once time-sharing became the goal, the next question was how to design the user inter-

face for these new time-sharing systems. To anyone of the era who had had the opportunity

to use a machine interactively, the obvious answer was that it should look as though the

user had a computer to himself. The early discussions of time-sharing systems empha-

sized this aspect. For example, in a 1962 lecture, John McCarthy described the goal of

time-sharing as: “From the user’s point of view, the solution clearly is to have a private

computer” [6]. Similarly, in an MIT report proposing research into time-sharing systems,

Herbert Teager described its goal as presenting “. . . all the characteristics of a user’s own

personal computer. . . ” [14].

This orientation naturally carried over to early time-sharing system implementations.

The authors of the APEX time-sharing system built in 1964, for example, said that it “sim-

ulates an apparent computer for each console” [15]. A time-sharing system at UCB was

described in a 1965 paper as built on the principle that “. . . each user should be given, in

effect, a machine of his own with all the flexibility, but onerousness, inherent in a ‘bare’

machine” [12]. These systems were not exceptional cases, as reported in a 1967 theoretical

treatment of time-sharing systems [10]: “Time-shared systems are often designed with the

intent of appearing to a user as his personal processor.”

It should not be surprising, then, that many of these early time-sharing systems were al-

most virtual machine monitors. The APEX system mentioned above, which ran on the TX-

2 machine at MIT, is representative. Its “apparent computers” were described as “somewhat

restricted replicas of TX-2 augmented by features provided through the executive program.”

The restrictions included a reduced amount of memory and removal of input/output instruc-

tions, for which the executive (kernel) provided equivalents through what are called system

calls today. (Much later, R. J. Creasy is reported to have said about one of these systems

that they were “close enough to a virtual machine system to show that ‘close enough’ did

not count” [16].)
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Another time-sharing system of this type was M44, a machine developed at IBM’s

Yorktown Research Center between 1964 and 1967 [17, 18, 19]. It was based on an IBM

7044 machine, whose hardware was modified to increase the size of the address space and

add support for paging and protection. In the first known use of the term virtual in comput-

ing [19], the M44 simulated a “a more or less ideal computer, or virtual machine closely

related to the M44,” which they called 44X. The M44/44X system was not, however, any

closer to a true virtual machine system than the other time-sharing systems of its day: the

44X was sufficiently different from both the IBM 7044 and the M44 that no existing soft-

ware ran on it without porting. M44/44X is thus notable for its introduction of terminology,

but it was not a virtual machine system.

2.2 The First Era of Virtualization

A 1974 paper by Popek and Goldberg defines a VMM as software that meets three condi-

tions [20]. First, a VMM must provide an environment essentially identical to that of the

machine that it simulates, except for resource availability or timing. Thus, the VMM must

isolate the VM from other activities on the same host. Second, the VMM must run the

simulated software at near-native speed. Third, the VMM must assert control over all the

virtual machine’s resources.

By the mid-1960s all the prerequisites for such virtual machine systems were available.

Moreover, the researchers working on time-sharing systems were oriented toward creating

the illusion of multiple private computers. In retrospect, the invention of the virtual ma-

chine monitor seems almost inevitable. Under the Popek definition, the first genuine virtual

machine system was CP-40, developed between 1965 and 1967 at IBM’s Cambridge Sci-

entific Center [16]. CP-40 was built on top of the then-fledgling IBM System/360 architec-

ture, which was binary and byte-addressed, with a 24-bit address space [21]. System/360

lacked architectural support for virtual memory, so CP-40 was developed on a machine

whose hardware was extended with a custom MMU with support for paging [22].

CP-40’s virtual hardware conformed to the System/360 architectural specification well

enough that it could run existing System/360 operating systems and applications without
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modification. Its conformance did have a few minor caveats, e.g. it did not support “self-

modifying” forms of I/O requests that were difficult to implement [23]. CP-40 did not

initially provide a virtual MMU, because of the amount of extra code required to do so, but

a later experimental version did include one [16, 24].

CP-40’s immediate successor was CP-67, developed by IBM from 1966 to 1969, also at

the Cambridge Scientific Center [16]. Unlike M44 and CP-40, CP-67 ran on unmodified,

commercially available hardware, the IBM System/360 Model 67 [23]. Later versions

of CP-67 provided to its VMs a virtual MMU with an interface identical to the Model

67’s [16].

The development of CP-67 also marked an early shift in the design of virtual inter-

faces. CP-40’s virtual interfaces were designed to faithfully implement the System/360

specifications for real hardware. CP-67, however, intentionally introduced several changes

from real hardware into its interfaces. To improve the performance of guest operating sys-

tems, CP-67 introduced a “hypercall”-based disk I/O interface for guests that bypassed the

standard hardware interface for which simulation was less efficient. To reduce resource

requirements, CP-67 allowed read-only pages of storage to be shared among virtual ma-

chines [25]. An experimental version also added the ability for guest OSes to map pages

on disk directly into pages of memory, reducing the amount of “double paging” [26]. To

improve user convenience, CP-67 introduced a feature called “named system IPL,” which

today we would call checkpointing, to speed up booting of VMs [25]. It also added a

so-called “virtual RPQ device” that a guest OS could read to obtain the current date and

time [16], so that the user did not need to enter them manually.

IBM continued to develop CP-67, producing VM/370 as its successor in 1972. VM/370

added “pseudo page faults” that allowed guests to run one process while another was wait-

ing for the VMM to swap in a page [27]. It also provided additional hypercalls for acceler-

ated terminal I/O and other functions [28].

Work on virtual machines had started to spread into more diverse environments during

the development of VM/370. Many of these new VMMs also adopted specialized interfaces

for these new reasons. A modified version of CP-67 developed at Interactive Data Corpo-

ration in Massachusetts added hypercalls for accelerated terminal support and mapping of

disk pages into memory, among other changes, which reduced the resource requirements of
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one guest operating system by a factor of 6 [29]. The GMS hypervisor, developed in 1972

and 1973 at IBM’s Grenoble Scientific Center in France, accelerated I/O by intercepting

system calls from a guest application to the guest kernel and directly executing them in

the hypervisor. The VOS-1 virtual machine monitor, developed in 1973 at Wayne State

University, was specialized to support OS/360 as its sole guest OS. Because OS/360 did

not use an MMU, the virtual MMU support originally included in VOS-1 was removed to

improve performance [30]. (VOS-1 ran as a regular process under the UMMPS supervisor,

which ran other user processes as well. It was thus also the first “Type II” (hosted) virtual

machine monitor [31].)

2.3 The Second Era of Virtualization

As the 1970s drew to a close, the economics that had dictated the need for users to share a

small number of large, expensive systems began to shift. Harold Stone accurately predicted

the demise of the first era of virtualization in 1979 [32]:

. . . costs have changed dramatically. The user can have a real, not virtual, com-

puter for little more than he pays for the time-sharing terminal. The personal

computer makes better use of the human resource than does the time-sharing

terminal, and so the personal computer is bound to supplant the time-sharing

computer as the human resource becomes the most expensive resource in a

system.

More briefly, R. A. MacKinnon expressed a similar sentiment the same year [27]: “For

virtual machines to become separate real machines seems a logical next step.”

Indeed, research into virtualization declined sharply in the 1980s. The on-line ACM

Portal finds only 6 papers between 1980 and 1990 that contain the phrase “virtual machine

monitor,” all published before 1986, the least for any decade from the term’s introduction

onward.

The corresponding decline of commercial interest in virtualization in the 1980s may

be seen from the evolution of Motorola’s 680x0 line of processors. The 68020 proces-

sor, introduced in 1984, included a pair of instructions (CALLM and RTM) that supported
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fine-grained “virtualization rings” to ease VMM implementation [33, 34]. In 1987, its

successor, the 68030, did not implement these instructions, although it implemented every

other 68020 instruction [35]. Furthermore, Motorola documentation for the 68040 and later

680x0 models no longer mentioned virtual machines [36, 37].

Virtualization did continue to be of interest on large mainframe systems, where high

cost still demanded high machine efficiency. IBM introduced new versions of System/370

with features to improve performance of VM/370 around 1983 [38]. Also in 1983, NEC

released VM/4, a hosted virtual machine monitor system for its ACOS-4 line of mainframes

that was designed for high performance [39]. Hitachi and Fujitsu also released mainframe

virtualization systems, named VMS and AVM respectively, in or about 1983, but it appears

that these systems were described only in Japanese [40, 41].

The late 1990s began a revival of interest in virtualization with the introduction of

systems to virtualize the increasingly dominant 80x86 architecture. In the commercial

sector, the revival was again due to the shifting economics of computing. This time, the

problem was too many computers, not too few: “. . . too many underutilized servers, taking

up too much space, consuming too much power, and at the end costing too much money. In

addition, this server sprawl become a nightmare for over-worked, under resourced system

admins” [42]. Virtualization allowed servers to be consolidated into a smaller number of

machines, reducing power and cooling and administrative costs.

In academia, virtualization provided a useful base for many kinds of research, by al-

lowing researchers flexible access to systems at a lower level than was previously conve-

nient, among other reasons. The first academic virtual machine monitor of the new era was

Disco, which used virtual machines to extend an operating system (Irix) to run efficiently

on a cache-coherent nonuniform memory architecture (CC-NUMA) machine [43]. By run-

ning multiple copies of Irix, instead of one machine-wide instance, on such a machine,

it obtained many of the benefits of an operating system optimized for CC-NUMA with a

significantly reduced cost of implementation.

The first commercial virtual machine monitor of this new generation was VMware

Workstation, released in 1999. One caveat was that the 80x86 architecture was not classi-

cally virtualizable according to Popek’s definition, which required that the VMM execute

most instructions directly on the CPU without VMM intervention. Instead, Workstation
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and other 80x86 VMMs must simulate all guest instructions that run at supervisor level.

Thus, for the purpose of this thesis, we relax the definition of a VMM to include what

Popek calls a hybrid virtual machine system: a VMM, except that all instructions that run

in the VM’s supervisor mode are simulated. (The hybrid approach had earlier been used in

a VMM for the PDP-10 [44], among others.)

VMware Workstation offered virtual interfaces compatible with physical hardware. It

also offered specialized graphics and network interfaces with improved performance [45].

To improve the convenience of its users, it provided a specialized mouse interface that

allows a virtual machine to act much like another window on the user’s desktop, instead

of requiring the user to explicitly direct keyboard and mouse input to the VM or to the

host [46].

Other virtualization systems introduced in the late 1990s and early 2000s also used

modified virtual interfaces. For simplicity, the Denali virtualization system modified the

memory management and I/O device interface to simplify its implementation [47]. To

increase performance, the later Xen project used custom virtual interfaces extensively for

memory management and device support [48].

2.4 Virtual Interfaces

The preceding history of virtual machine monitors included descriptions of several inter-

faces between virtual machine monitors and the software that runs inside them. These

virtual interfaces can be classified into two categories: pure and impure [18]. A pure inter-

face is one that simulates the behavior of physical hardware faithfully enough that existing

operating systems (and other software) can run on top of it without modification. Any

other interface is impure. Thus, impure interfaces include streamlined or tweaked versions

of physical interfaces and interfaces wholly different from any physical hardware interface.

Pure interfaces have software engineering elegance in their favor. They also have the

advantage that they can be used by existing software without modification. Impure inter-

faces, on the other hand, require software, in particular operating systems, to be ported to

run on top of them. As we have seen, impure interfaces have still been implemented in

many virtual machine monitors, usually for one of four reasons:
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• To simplify VMM implementation: From a VMM implementor’s point of view, hard-

ware interfaces are often too complex, due to issues such as protocol and timing

requirements of hardware bus interfaces, backward compatibility, hardware error

conditions that can’t happen in software implementations, and features included in

hardware but rarely if ever used by software.

• To improve performance: Some hardware interfaces cannot be efficiently imple-

mented in software. For some hardware, each read or write access requires an ex-

pensive trap-and-emulate sequence in software simulation. The 16-color graphics

modes supported by IBM’s VGA display adapter are an example. In these modes,

writing a single pixel requires multiple I/O read and write operations [49] that are

easily implemented in hardware but difficult to emulate efficiently.

• To reduce resource requirements: Some hardware interfaces have excessive memory

requirements in the guest or on the host, compared to interfaces designed for virtual-

ization. Interfaces that require buffering are a common example: when implemented

in a pure fashion, these often result in redundant buffering. For example, physical

terminal interfaces generally require the operating system to buffer data flow. When

such a terminal interface is virtualized, and the virtual terminal is connected to a

physical terminal, buffering occurs in both the guest operating system and the VMM,

wasting memory and time.

• To improve the user experience: Because the VMM exists at a level above any indi-

vidual virtual machine, sometimes it has information that the VMs do not. When it

can provide this information directly to the VMs, without explicit action by the user,

it improves the user experience.

Three common attributes stand out from the impure virtual interfaces that we have

examined, particularly the ones involving modern operating systems. First, although in-

terfaces and software change, there is a strong motivation to maintain compatibility with

application programs. The ability to run existing software is, after all, a hallmark of virtual

machine monitors. For the modern OS examples, this means that changes to the OS kernel
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are acceptable, provided that most application programs continue to run unmodified on the

OS.

Second, given the size, complexity, and market dynamics of modern operating systems

such as Linux and Windows, the design of impure interfaces also tends to be constrained

by the extent of the changes to the underlying OS kernel. In practice, this means that the

changes required for an impure interface must fit within an existing interface in the kernel.

By doing this, the VMM layer’s owners ensure that advances in other parts of the kernel

cleanly integrate with VMM-related changes. This can be seen in the focus on changes

at the virtual device level, under the device driver interface. Occasionally, this principle

has been important enough that new interface layers have been accepted into kernels by

their upstream developers for no other reason than to enable an important impure interface,

e.g. the paravirt-ops patch to Linux that abstracts MMU operations into a VMM-

friendly API.

Third, impure virtual interfaces tend to be designed by streamlining, simplifying, or

subsetting a common physical interface. For example, rather than simulating an Ethernet

controller with an interface for a legacy I/O bus, VMMs such as Xen provide a streamlined

virtual Ethernet interface with shared memory transmit and receive rings.

This thesis investigates interfaces that share the first two properties above—application

compatibility and limited OS changes—but not the third, that is, our interfaces do not cor-

respond to those of any common physical hardware. The key differences between common

impure virtual interfaces and the ones that we propose are:

• Our interfaces operate at a higher level of abstraction than common physical inter-

faces.

• Our interfaces allow significant amounts of code to be removed from, or disabled in,

operating systems that take advantage of them.

• Our interfaces increase the modularity of operating systems that take advantage of

them.

• Our virtual interfaces are implemented in separate virtual machines, as virtual ma-

chine subsystems, instead of in the VMM.



CHAPTER 2. VIRTUAL INTERFACES 16

The following chapter describes our rationales for extreme paravirtualization.



Chapter 3

Motivation

The virtual hardware interfaces provided by many VMMs have been specialized to the

virtual environment, in most cases by streamlining, simplifying, or subsetting a physical

interface. This thesis proposes virtual interfaces that do not resemble common physical

interfaces, but instead operate at a higher level of abstraction. This allows the code imple-

menting the lower level parts of the virtual device to effectively be pulled out of the virtual

machine, into a separate module. This chapter describes our motivations for pulling device

implementations out of a virtual machine into a separate module.

3.1 Manageability

Virtual machines create new challenges in manageability and security [50]. First, because

virtual machines are easy to create, they tend to proliferate. The amount of work involved

in maintaining computers increases at least linearly with the number of computers involved,

so just the number of VMs in an organization can swamp system administrators.

A second problem in VMs’ manageability is their transience: physical machines tend

to be online most of the time, but VMs are often turned on only for a few minutes at a time,

then turned off when the immediate task has been accomplished. Transience makes it dif-

ficult for system administrators to find and fix VMs that have security problems, especially

since software for system administration is usually oriented toward physical machines.

17
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Third, whereas physical machines progress monotonically forward as software exe-

cutes, the life cycle of a VM resembles a tree: its state can be saved at any time and re-

sumed later, permitting branching in its life cycle. On top of transience, branching adds the

possibility that fixes, once applied, can be undone by rolling back to a previous unpatched

version. Malware and vulnerable software components can thus be stealthily reintroduced

long after it has been “eliminated.” Common system administration tools are not designed

to take this possibility into account.

Pulling a device implementation out of a VM into a separate domain can address some

of these manageability challenges. It should be possible for a device module to be admin-

istered, repaired, or replaced separately from the VM or VMs to which it provides service.

This can reduce the system administration burden from each of the three causes above.

VM proliferation has less impact because administrators can focus their efforts on a set of

device modules, each of which is much smaller in size than a complete VM and which,

taken as a group, are less much heterogeneous than a comparable group of VMs. Device

implementations can be designed for off-line as well as on-line maintenance, reducing the

impact of VM transience. Finally, a device module need not roll back in lockstep with the

rest of a virtual machine, easing the problem of undoing security patches and bug fixes.

Versioning of device implementations can be decoupled from the versioning of the VMs

that they service: as long as they share a common interface, any device implementation

should be able to interface with any VM.

Another potential manageability benefit from pulling out device implementations is

increased uniformity of management. Every OS today, and even different versions of the

same OS, has different interfaces for managing its network stack and file system. A network

or file system module separate from an OS would offer the same administrative interface

regardless of the OS it was attached to, reducing management burden.

3.2 Modularity

Pulling the implementation of a device into a separate protection domain increases the

modularity of the operating system. Operating system research has identified several direct

and indirect software engineering benefits to increasing the modularity of an operating
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system [51, 52, 1, 53, 54]:

Simpler Each module is much simpler than a monolithic kernel. The operating system

as a whole is easier to understand because interaction between modules is limited to

explicitly defined channels of communication.

More robust Small, isolated VMs are easier to test or to audit by hand than entire operat-

ing systems, improving reliability. Failing VMs can be restarted or replaced individ-

ually and perhaps automatically.

More secure Isolation means that a security hole in one VM, such as a buffer overflow,

does not automatically expose the entire operating system to attack. The trusted

computing base (TCB) can be reduced from the entire kernel to a small number of

VMs. Other modules need not be completely trusted.

More flexible One implementation of a module can be replaced by another, to provide

enhanced functionality, better performance, or other attractive features. Modules can

be switched while the system is online.

More manageable Manageability is a useful application for the flexibility of a modular

VM-based operating system. Modules can be replaced by implementations that con-

figure themselves with policy set by a site’s central administrators, for example, with-

out otherwise affecting operating system functionality.

More maintainable Bugs tend to be isolated to individual modules, reducing the amount

of code that can be at fault. Smaller modules are easier to modify.

More distributed Individual modules can be moved to other hosts, when this is desirable,

simply by extending their communication channels across the network.

3.3 Sharing

The low-level isolation enforced by the structure of traditional virtual machines frustrates

controlled sharing of high-level resources between VMs. By pulling device implementa-

tions out of an operating system into a separate device module, we enable that layer to
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serve multiple client VMs. Thus, extreme paravirtualization facilitates sharing between

VMs running on a host. For example, virtual disks can safely be shared between VMs

only in a read-only fashion, because there is no provision for locking or synchronization

between the VMs at such a low level, but a protocol at the file level can easily support

sharing.

Network protocols can also be used for sharing among virtual machines, e.g. existing

network file system protocols can be used among virtual machines as easily as they can

be used across a physical network. But special-purpose device modules have a number of

advantages over general-purpose network protocols. A device implementor can make use

of constructs not available across a network. A file system designed for sharing among VMs

can, for example, take advantage of memory physically shared among VMs to increase

cache coherency, reduce memory usage, and improve performance, compared to a similar

network file system. As for a device module designed for networking, communication to

such a module cannot also be based on networking without defeating its own purpose.

On a VMM with multiple virtual machines, a shared network device module provides

a nice way of sharing the network connections. Scarcity of IP addresses means that they

must often be shared among multiple virtual or physical machines. A common solution at

the packet level is a network address translation (NAT), in which each machine is assigned

a unique IP address that is only routable within the NATed network. Addresses and ports on

packets that pass between the NATed network and external networks are then dynamically

translated.

NAT has a number of drawbacks. In its simplest form, NAT breaks many Internet proto-

cols and it does not support incoming connections. Advanced implementations paper over

these issues with transparent application-specific gateways and port redirection, but these

are stopgap measures that add significant overhead. NAT also cannot translate encrypted

protocols (unless the router has the key) and to be fully effective it requires the router to

reassemble fragmented packets. In short, NAT breaks end-to-end connectivity.

An extreme paravirtualization network architecture permits the use of NAT, if desired,

but it also enables an alternative. A gateway VM can connect any number of VMs to a

single IP address. The VMs attached to the gateway can then share the IP address in a

natural manner. Any of them can connect from or listen on any port (unless forbidden
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Figure 3.1: VM configuration for increased network security. Boxes represent VMs.
Double-headed arrows indicate extreme paravirtualization high-level network links.

by firewall rules), sharing ports as if they were processes within a single VM’s operating

system.

3.4 Security

Pulling a device implementation into a separate protection domain protects it from some

forms of direct attack. For example, an exploit against an unrelated part of the operating

system kernel no longer automatically defeats all of the device implementation’s attempts

at security. Conversely, an exploit against the device implementation no longer defeats all

of the kernel’s security.

Another form of security benefit applies to enforcement of security policies. In particu-

lar, consider network security, in which policies are often implemented by reconstructing a

view of high-level activities, such as connections and data transfers, from low-level events

such as the arrival of Ethernet frames. Extreme paravirtualization can improve on this sit-

uation in at least two ways. First, reconstructions can be inaccurate or ambiguous, due to

fundamental properties of the protocols involved [55, 56, 57] or to implementation bugs or

limitations [58]. Second, reconstruction has a performance cost that need not be incurred

if reconstruction is not necessary.

Extreme paravirtualization also has the potential to reduce the size of the trusted code

base (TCB) in some situations. Consider a server VM that contains valuable data. We want

to prevent attacks from reaching the VM and to prevent confidential data from leaking out

of the VM in the event of a successful attack. In a conventional design, a single VM con-

tains the application, the firewall, and the network stack. A refined conventional design

would move the firewall into a separate VM, but both VMs would then contain a full net-

work stack. With extreme paravirtualization, we can refine the design further by pulling the

network stack out of both the firewall and application VMs, as shown in Figure 3.1. In this
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design, the VMs communicate over a simple protocol at the same level as the BSD sockets

interface, such as the PON protocol described in Section 4.2. The firewall VM’s code may

thereby be greatly simplified. The TCB for the final design is then reduced to the contents

of the VMM and the firewall VM, which are both small, simple pieces of code.

In this scenario, the firewall VM has full visibility and control over network traffic. It

can therefore perform all the functions of a conventional distributed firewall, even though

it does not contain a network stack. It has an advantage over “personal firewall” soft-

ware, etc., that malware in the application VM cannot disable it, as can happen under

Windows [59], on which even Microsoft admits malware is common [60].

The TCP/IP stack VM in this scenario, if compromised, can attempt to attack the ex-

ternal network through the virtual Ethernet or to attack or deny service to the server VM

through the gateway VM. However, this is no worse than the situation before the TCP/IP

stack is pulled out. In fact the situation is considerably improved in that the TCP/IP stack

no longer has access to the server application’s confidential data.

The ability to insert a simple “firewall” between an application VM and a device imple-

mentation module can also be useful in a file system. This layer could encrypt and decrypt

data flowing each way, add a layer of access control, etc. Compared to a virtual disk im-

plementation, it would be able to work at the granularity of a file instead of an entire disk.

Compared to a network file system implementation, it could have a significantly reduced

trusted code base size, because the interposition layer would have much less code than a

typical disk- or network-based file system, as well as better performance (as we will show

in Section 6.1.3).

3.5 Performance

Extreme paravirtualization may improve performance because of its potential to reduce the

number of layers traversed by access to a device. In a OS in a VM under conventional par-

avirtualization, for example, file access traverses the OS’s file system and its block device

stack, then it traverses a similar block device stack in the VMM. Extreme paravirtualiza-

tion gives us the opportunity to reduce the amount of layering: a sufficiently secure device

module could be trusted by the VMM to access hardware directly, eliminating a level of
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indirection and potentially improving performance.

Separating a device implementation from the OS makes it easy to replace it by a spe-

cialized and therefore possibly faster implementation. For example, Section 6.1.2 shows

the performance benefits of bypassing TCP/IP code in favor of a simpler shared-memory

based protocol, when virtual machines on the same host communicate. Compared even to

the highly optimized Linux TCP/IP networking code, the shared-memory implementation

achieves significantly higher performance.

A virtual network stack can also forward the communication to TCP/IP acceleration

hardware such as a TCP offload engine. If this reduces load on the host CPUs, it may be

beneficial for performance even if it does not improve network bandwidth or latency. A

related possibility is to use a substitute for TCP/IP over a real network. This may improve

performance if the device implementation can take advantage of specialized features of the

real network, such as reliability and order guarantees provided by Fast Messages [61].

Our paravirtual file system prototype is faster than Linux NFS, and almost as fast as a

conventional file system on a virtual disk (see Section 6.1.3). It also allows all the VMs

that use it to share caches, reducing memory requirements.



Chapter 4

Extreme Paravirtualization

The previous chapter explained reasons to introduce extreme paravirtualization into a vir-

tual machine environment. This chapter explains the idea of extreme paravirtualization in

more detail, by describing extreme paravirtualization interfaces designed as network and

file system modules, respectively. In the first section, we describe the requirements that

these virtual interfaces make on the hosting virtual machine monitor. The following sec-

tions then describe our network and file system paravirtualization designs and prototypes

in detail.

4.1 VMM Requirements

We assume the existence of a virtual machine monitor that runs directly on the hardware of

a machine and that is simple enough to be trustworthy, that is, to have no bugs that subvert

isolation among VMs. We also assume that the virtual machine monitor supports inter-

VM communication (IVC) mechanisms, so that device drivers, etc. may run in separate

virtual machines. Several research and industrial VMMs fall in this category, including

Xen, Microsoft Viridian, and VMware ESX Server [48, 62, 63].

We require support for three IVC primitives: statically shared memory regions for im-

plementing shared data structures such as ring buffers, the ability for one VM to temporar-

ily grant access to some of its pages to a second VM, and a “doorbell” or remote interrupt

mechanism for notifying a VM with a interrupt. These communication mechanisms are

24
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supported by multiple modern VMMs, including VMware Workstation through its Virtual

Machine Communication Interface [64], and related mechanisms have a history dating back

to at least 1979 [65].

The attractions of shared memory include simplicity, ubiquity, and performance. Re-

mote procedure call (RPC) is a viable alternative to shared memory, but RPC would have

required putting more code into the VMM and possibly required communicating VMs to

call into the VMM as an intermediary. It also would have forced more policy decisions into

the VMM: should RPC calls be synchronous or asynchronous? what should be the form

of and limits on arguments and return values? and so on. Finally, RPC can be effectively

layered on top of shared memory, as we do in our POFS prototype 4.3.1.

An unfortunate pitfall of sharing memory between mutually distrusting parties is the

possibility of data races: much like access to user-space data from a conventional kernel,

data may change from one read to the next. Data that is writable by both parties is partic-

ularly troublesome, because a party cannot assume that data it writes one moment will not

be maliciously overwritten by the other party in the next moment. It also increases total

memory requirements, because the shared memory cannot safely store data of value to the

party writing it, only copies of it.

Our IVC protocols reduce this risk of data races by using shared memory that is writable

by one VM or the other, but never by both. For two-way communication, we use one set of

pages that are accessible read/write by one VM and read-only by the other, and a second

set of pages set up the opposite way.

We designed our paravirtual interfaces to be OS-neutral, in the hope that our service

VMs could be useful with diverse application VMs, including Windows and Unix-like

OSes other than Linux, not just those running the particular Linux version that we used. For

example, the inode data structure in our file system interface does not correspond directly

to Linux in-memory inode structure’s layout or to an on-disk inode layout. Rather, we

defined an independent format. Thus, it is necessary to do some data copying and format

translation between them, which costs time and memory. However, it is also more robust:

changes to OS data structures only require updating one piece of translation code, and in

some cases this may happen automatically as a result of recompilation.
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Figure 4.1: Networking architectures for virtual machine monitors: (a) the customary ap-
proach, and (b) extreme paravirtualization.

4.2 Network Paravirtualization

Modern operating system environments have evolved to implement networking protocols

such as TCP/IP using multiple cleanly separated internal interfaces. Today’s operating

systems, including Linux, other Unix-like systems, and Windows [66], include at least the

following interfaces in the networking stack:

• The system call interface accessed by user programs. Operations at this layer include

the system calls socket, bind, connect, listen, accept, send, and recv.

• The virtual socket interface, which in effect translates between a system call-like
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interface and TCP/IP or UDP/IP packets. This roughly corresponds to the transport

and network layers.

• The virtual network device interface, which encapsulates packets inside frames and

transmits them on a physical or virtual network. The essential operations at this layer

are sending and receiving frames. It implements the data link and physical layers of

the network.

Figure 4.1(a) shows the most common approach to networking for virtual machines.

It is used by research and commercial VMMs from most vendors, including VMware,

Microsoft, and Xen. In this approach, user applications use the system call interface to

make network requests through the kernel’s socket layer, which uses the kernel’s network

stack to drive a virtual Ethernet device. In a VMM that supports unmodified guest OSes,

the virtual Ethernet device resembles a physical Ethernet device; in a paravirtual VMM,

it has a streamlined interface. Regardless, the VMM or a privileged service VM in turn

routes frames between the virtual Ethernet device and physical network hardware.

For this thesis we investigated paravirtualization at the virtual socket interface, as shown

in Figure 4.1(b), with Linux as the application VM’s guest operating system. We created

a new Linux protocol family implementation that transparently substitutes for the native

Linux TCP/IP stack. From user-level applications our network stack is accessed identically

to conventional Linux TCP/IP stack. From an application’s point of view, all system calls

on sockets and file descriptors behave in the same way on these sockets as they do on

sockets supplied by the Linux TCP/IP stack.

Instead of operating at a link level, using a packet interface, our paravirtualized network

device, called pull out networking or PON, operates at the socket interface. It offers both

TCP/IP-compatible reliable byte stream protocols and UDP-compatible datagram commu-

nication.

Each PON socket is represented by a data structure in shared memory. This socket data

structure is divided into two pieces, one in shared memory that is writable by the VM and

the other in shared memory writable only by the PON paravirtual network implementation.

Each part includes connection state information and consumer/producer pointers into data

buffers.
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Figure 4.2: Accessing a physical network through a gateway VM using PON.

Implementing a TCP/IP stack in our VMM would violate the principle that the VMM

should be simple enough that it can be assumed secure, so we instead placed the network

stack in another VM and used the PON protocol to access it. We then made the network

stack VM act as a gateway between the application VM and a conventional TCP/IP net-

work, as shown in Figure 4.2. Thus, we effectively pulled the networking stack out of our

application VM and moved it into a service VM.

4.2.1 Implementation Details

Multiple projects have layered network-like protocols on top of shared memory for com-

munication between physical or virtual machines. Virtual memory-mapped communication

(VMMC), for example, uses memory shared among multicomputer nodes as a basis for

higher-level protocols, and Xenidc uses shared memory to implement high-level, network-

like communication between device drivers running in VMs on a single host [67, 68]. PON

adapts these ideas to transparently provide a substitute for real network protocols.

PON uses a ring buffer of pointers to sockets (actually, a pair of ring buffers, one modi-

fied by the application VM, the other by the paravirtualized network stack) to draw attention

to sockets that require attention. A remote interrupt requests a look at the ring buffer.

To establish a TCP-like byte stream connection, the application VM initializes a new
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socket structure, puts a pointer to it in the ring buffer, and sends a remote interrupt to the

network stack. The PON network stack then initiates a TCP/IP connection on the external

network, finishes initializing the socket, and replies with a pointer to the socket. (If the

connection fails, it instead replies with an error code.)

To send data on a stream socket, the sender allocates a buffer from its shared memory

and writes the data to it. It then indicates the buffer’s location and size in the socket structure

and adds a notification to the command queue. The paravirtual network stack updates a

bytes received counter in the socket as data are acknowledged by the remote TCP endpoint.

To send more data on the socket, the application VM uses its existing buffer as a circular

queue, inserting more data and pushing it to the receiver. Old data may be overwritten as

the PON network stack indicates that it has been processed.

PON’s buffer management technique, in which the data sender is responsible for man-

aging its own buffer space, is a form of sender-based buffer management [69, 67, 61].

PON’s implementation differs from some others in that buffer space is reserved at the time

an application VM first accesses the paravirtual network device, instead of requiring an

additional per-connection round trip. Because buffer space is drawn from shared mem-

ory owned by the sender, not by the receiver, there is no potential for a sender to cause a

denial-of-service attack on its peer across a PON link through memory exhaustion.

UDP-like connectionless datagram messages are sent in a similar way. The applica-

tion allocates shared memory and copies the message payload into it. Then it allocates a

socket and initializes it with the message type, a pointer to the payload, and other metadata.

Finally, it appends a pointer to the socket to the ring buffer and sends a remote interrupt.

When the paravirtual network stack indicates that it has sent the message, the socket and

its payload is freed up for other use. Further messages allocate new sockets.

We have not implemented rarely used TCP features, such as urgent data and simultane-

ous open, but they pose no fundamental difficulties.

4.3 File System Paravirtualization

Unix-like operating systems and Windows, among others, have long broken up their file

system processing into the following multiple, cleanly separated layers (and sometimes
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more) [70, 66]:

• File-related system calls by user programs request operations such as open, creat,

read, write, rename, mkdir, and unlink.

• The virtual file system (VFS) layer calls into the individual file system’s implementa-

tion of a system call. The file system executes it in a file system-specific way, in effect

translating these operations into block read and write operations (for a disk-based file

system).

• The block device layer performs read and write operations on device sectors.

In the most common approach to storage for virtual machines, all of these layers are

implemented inside a single virtual machine’s kernel. The VMM or a privileged service

VM then implements a virtual (or paravirtual) disk device model.

However, we can use these internal interfaces to break pieces of a file system out of an

operating system kernel at another layer. For this thesis, we investigated paravirtualization

at the VFS layer, by implementing a new file system that acts, from the user’s point of

view, like any other Linux file system. Internally, instead of being layered on top of a

conventional block device (or network), our file system transmits file system operations to

a paravirtualized file system device, using a shared memory interface we call the pull out

file system protocol or POFS. The paravirtualized file system device accessed through the

POFS protocol can implement the file system in any way deemed appropriate: on top of a

block device or a network, generated algorithmically, etc.

Compared to a network file system, POFS offers better performance (see section 6.1.3).

Also, its semantics are closer to those of a local disk than those of most network file sys-

tems, in particular regarding cache coherence: data in a POFS file system is completely

coherent for inter-VM access because data pages are physically shared between VMs.

POFS is particularly well-suited as a basis for implementing a virtualization aware file

system (VAFS), a file system that combines the advantages of network file systems and

virtual disk-based file systems. A VAFS provides the powerful versioning model and easy

provisioning of virtual disks, while adding the fine-grained controlled sharing of distributed
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file systems. The following chapter describes the idea of a VAFS, as well as our prototype

implementation, in more detail.

The following section describes implementation details for our POFS prototype.

4.3.1 Implementation Details

The POFS interface uses a pair of small shared memory regions as ring buffers of RPC

requests and replies. The application VM issues an RPC request to initiate an operation,

to which the POFS implementation responds after the operation has completed. An RPC

request/reply pair exists to implement most file system operations: creat, read, write,

rename, mkdir, unlink, and so on. This use of a shared memory ring buffer for RPCs

in a file system is adapted from VNFS [71].

File system operations, that work with regular file data, such as read and write, are

handled differently, through RPCs that directly obtain access to data pages in the POFS

server’s file cache, with read/write access if the client VM is authorized to write to the file

and read-only access otherwise. The application VM then performs the operation directly

on the mapped memory. The data is cached in the application VM, so that later accesses

do not incur the cost of an RPC. The guest physical frames can be further mapped as user

virtual pages to implement the mmap system call.

This use of grant access to pages allows for cache consistency within a host with min-

imal overhead. When two client VMs access the same data or metadata, a single machine

page is mapped into the “physical” memory of both, so that file modifications by one client

are immediately seen by the others. This also reduces memory requirements.

Our implementation suffers from some races between file truncation (with truncate)

and writes that extend files. The result is momentary cache incoherence between clients.

We do not believe that this limitation is fundamental to our approach.

To improve the performance of access to file system metadata, e.g. for the stat or

access system calls, we use a similar caching mechanism for metadata. The POFS in-

terface exports POFS-format inodes for describing files. This inode format is largely file

system and OS kernel independent. The POFS interface exports a cache of several pages

of memory (20 pages, in our tests) that contain these POFS-format inodes packed into slots
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(approximately 64 inodes per page). An application VM is granted read-only access to all

of these cache pages, a single set of which are shared among all clients of a given POFS

file system.

Using this cache, inode lookups can avoid RPC communication of the POFS interface.

Each RPC that accesses an inode ensures that the corresponding POFS inode information

is available and up-to-date in one of these cache slots and returns a pointer to its slot. This

use of shared memory for inode data resembles VNFS [71].

To reduce memory usage, there are relatively few POFS inode cache slots, compared

to the number of inodes cached by Linux at any given time, so clients must check that the

inode in a slot is the one expected and, if it has been evicted, request that it be brought

back into a cache slot. Our implementation chooses POFS inode cache slots for eviction

randomly, which provides acceptable performance in our tests (see Section 6.1.3).

Our prototype implementation does not limit access to cached inodes only to VMs

that can access those inodes. This is a security issue, since this can allow a VM to view

attributes, such as modification times and link counts, of inodes that it otherwise would

not be able to see. Inodes do not include file names, nor does the ability to view a cached

inode give a VM any other ability to inspect or manipulate the inode or any of the files that

reference it. Still, for security a more advanced implementation would group inodes into

pages based on the credentials require to access them, and then allow VMs to view only

the inodes that they are authorized to see.

POFS is robust against uncooperative or crashed client VMs. Each client is limited in

the number of pages owned by the POFS server that it may map at any time. At the limit,

to map a new page the client must also agree to unmap an old one. Client VMs may only

map data and access metadata as file permissions allow.



Chapter 5

Virtualization Aware File Systems

The previous chapter described network and file system extreme paravirtualization proto-

types in detail. This chapter further extends the extreme paravirtualization approach for

virtual storage, by proposing the concept of a virtualization aware file system (VAFS) that

combines the features of a virtual disk with those of a distributed file system. Whereas the

features of an extreme paravirtualization file system, such as POFS, are comparable to a

network file system, a VAFS adds versioning and other features that are particularly useful

in a virtual environment.

5.1 Motivation

Virtual disks, the main form of storage in today’s virtual machine environments, have many

attractive properties, including a simple, powerful model for versioning, rollback, mobility,

and isolation. Virtual disks also allow VMs to be created easily and stored economically,

freeing users to configure large numbers of VMs. This enables a new usage model in which

VMs are specialized for particular tasks.

Unfortunately, virtual disks have serious shortcomings. Their low-level isolation pre-

vents shared access to storage, which hinders delegation of VM management, so users must

administer their own growing collections of machines. Rollback and versioning takes place

at the granularity of a whole virtual disk, which encourages mismanagement and reduces

security. Finally, virtual disks’ lack of structure obstructs searching or retrieving data in

33
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their version histories [72].

Conversely, existing distributed file systems support fine-grained controlled sharing, but

not the versioning, isolation, and encapsulation features that make virtual disks so useful.

To bridge the gap between these two worlds, we present Ventana, a virtualization aware

file system (VAFS). Ventana extends a conventional distributed file system with versioning,

access control, and disconnected operation features resembling those available from virtual

disks. This obtains the benefits of virtual disks, without compromising usability, security,

or ease of management.

Unlike traditional virtual disks whose allocation and composition is relatively static,

in Ventana storage is ephemeral and highly composable, being allocated on demand as a

view of the file system. This allows virtual machines to be rapidly created, specialized, and

discarded, minimizing the storage and management overhead of setting up a new machine.

Virtual machines are changing the way that users perceive a “machine.” Traditionally,

machines were static entities. Users had one or a few, and each machine was treated as

general-purpose. The design of virtual machines, and even their name, has largely been

driven by this perception.

However, virtual machine usage is changing as users discover that a VM can be as

temporary as a file. VMs can be created and destroyed at will, checkpointed and versioned,

passed among users, and specialized for particular tasks. Virtual disks, that is, files used

to simulate disks, aid these more dynamic uses by offering fully encapsulated storage,

isolation, mobility, and other benefits that will be discussed fully in the following section.

Before that, to motivate our work, we will highlight the significant shortcomings of

virtual disks. Most importantly, virtual disks offer no simple way to share read and write

access between multiple parties, which frustrates delegating VM management. At the same

time, the dynamic usage model for VMs causes them to proliferate, which introduces new

security and management risks and makes such delegation sorely needed [73, 74].

Second, although it is easy to create multiple hierarchical versions of virtual disks, other

important activities are difficult. A normal file system is easy to search with command-line

or graphical tools, but searching through multiple versions of a virtual disk is a cumber-

some, manual process. Deleting sensitive data from old versions of a virtual disk is simi-

larly difficult.
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Finally, a virtual disk has no externally visible structure, which forces entire disks to

roll back at a time, despite the possible negative consequences [73]. Whether they real-

ize it or not, whole-disk rollback is hardly ever what people actually want. For example,

system security precludes rolling back password files, firewall rules, encryption keys, and

binaries patched for security, and functionality may be impaired by rolling back network

configuration files. Furthermore, the best choice of version retention policy varies from file

to file [75], but virtual disks can only distinguish version policies on a whole-disk level.

These limitations of virtual disks led us to question why they are the standard form of

storage in virtual environments. We concluded that their most compelling feature is com-

patibility. All of their other features can be realized in a network file system. By adopting

a widely used network file system protocol, we can even achieve reasonable compatibility.

The following section details the virtual disk features that we wish to integrate into

a network file system. The design issues raised in this integration are then covered in

Section 5.3.

5.2 Virtual Disk Features

Virtual disks are, above all, backward compatible, because they provide the same block-

level interface as physical disks. This section examines other important features that virtual

disks offer, such as versioning, isolation, and encapsulation, and the usage models that they

enable. This discussion shapes the design for Ventana presented in the next section.

5.2.1 Versioning

Because any saved version of a virtual machine can be resumed any number of times, VM

histories take the form of a tree. Consider a user who “checkpoints” or “snapshots” a VM,

permanently saving the current version as version 1. He uses the VM for a while longer,

then checkpoints it again as version 2. So far, the version history is linear, as shown in

Figure 5.1(a). Later, he again resumes from version 1, uses it for a while, then snapshots

it another time as version 3. The tree of VMs now looks like Figure 5.1(b). The user can

resume any version any number of times and create new snapshots based on these existing
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Figure 5.1: Snapshots of a VM: (a) first two snapshots; (b) after resuming again from
snapshot 1, then taking a third snapshot.

versions, expanding the tree.

Virtual disks efficiently support this tree-shaped version model. A virtual disk starts

with an initial or “base” version that contains all blocks (all-zero blocks may be omitted),

corresponding to snapshot 1. The base version may have any number of “child” versions,

and so may those versions recursively. Thus, like virtual machines, the versions of virtual

disks form a tree. Each child version contains only a pointer to its parent and those blocks

that differ from its parent. This copy-on-write sharing allows each child version to be stored

in space proportional to the differences between it and its parent. Some implementations

also support content-based sharing that shares identical blocks regardless of parent/child

relationships.

Virtual disk versioning is useful for short-term recovery from mistakes, such as inadver-

tently deleting or corrupting files, or for long-term capture of milestones in configuration

or development of a system. Linear history also effectively supports these usage models.

But hierarchical versions offer additional benefits, described below.

Specialization

Virtual disks enable versions to be used for specialization, analogous to the use of in-

heritance in object-oriented languages. Starting from a base disk, one may fork multiple

branches and install a different set of applications in each one for a specialized task, then

branch these for different projects, and so on. This is easily supported by virtual disks, but

today’s file systems have no close analogue.
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Non-Persistence

Virtual disks support “non-persistent storage.” That is, they allow users to make temporary

changes to disks during a given run of a virtual machine, then throw away those changes

once the run is complete. This usage pattern is handy in many situations, such as software

testing, education, electronic “kiosk” applications, and honeypots. Traditional file systems

have no concept of non-persistence.

5.2.2 Isolation

Everything in a virtual machine, including virtual disks, exists in a protection domain de-

coupled from external constraints and enforcement mechanisms. This supports important

changes in what users can do.

Orthogonal Privilege

With the contents of the virtual machine safely decoupled from the outside world, access

controls are put into the hands of the VM owner (often a single user). There is thus no

need to couple them to a broader notion of principals. Users of a VM are provided with

their own “orthogonal privilege domain.” This allows the user to use whatever operating

systems or applications he wants, at his discretion, because he is not constrained by the

normal access control model restricting who can install what applications.

Name Space Isolation

VMs can serve in the same role filled by chroot, BSD jails, application sandboxes,

and similar mechanisms. An operating system inside a VM can even be easier to set up

than more specialized, OS-specific jails that require special configuration. It is also easier

to reason about the security of such a VM than about specialized OS mechanisms. A key

reason for this is that VMs afford a simple mechanism for name space isolation, i.e. for pre-

venting an application confined to a VM modifying outside system resources. The VM has

no way to name anything outside the VM system without additional privilege, e.g. access

to a shared network. A secure VMM can isolate its VMs perfectly.
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5.2.3 Encapsulation

A virtual disk fully encapsulates storage state. Entire virtual disks, and accompanying vir-

tual machine state, can easily be copied across a network or onto portable media, notebook

computers, etc.

Capturing Dependencies

The versioning model of virtual disks is coarse-grained, at the level of an entire disk. This

has the benefit of capturing all possible dependencies with no extra effort from the user.

Thus, short-term “undo” using a virtual disk can reliably back out operations with complex

dependencies, such as installation or removal of a major application or device driver, or a

complex, automated configuration change.

Full capture of dependencies also helps in saving milestones in the configuration of a

system. The snapshot will not be broken by subsequent changes in other parts of the system,

such as the kernel or libraries, because those dependencies are part of the snapshot [76].

Finally, integrating dependencies simplifies and speeds branching. To start work on a

new version of a project or try out a new configuration, all the required pieces come along

automatically. There is no need to again set up libraries or configure a machine.

Mobility

A virtual disk can be copied from one medium to another without retaining any tie to its

original location. Thus, it can be used while disconnected from the network. Virtual disks

thereby offer mobility, the ability to pick up a machine and go.

Merging and handling of conflicts has long been an important problem for file systems

that support disconnected operation [77], but there is no automatic means to merge virtual

disks. Nevertheless, virtual disks are useful for mobility, indicating that merging is not

important in the common case. (In practice, when merging is important, users tend to use

revision control systems.)



CHAPTER 5. VIRTUALIZATION AWARE FILE SYSTEMS 39

5.3 Virtualization Aware File System Design

This section describes Ventana, an architecture for a virtualization aware file system. Ven-

tana resembles a conventional distributed file system in that it provides centralized storage

for a collection of file trees, allowing transparency and collaborative sharing among users.

Ventana’s distinction is its versioning, isolation, and encapsulation features to support vir-

tualization, based on virtual disk support for these same features,

The high-level architecture of Ventana can apply to various low-level architectures:

centralized or decentralized, block-structured or object-structured, etc. We restrict this

section to essential, high-level design elements. The following section discusses specific

choices made in our prototype.

Ventana offers the following abstractions:

Branches Ventana supports VM-style versioning with branches. A private branch is

created for use primarily by a single VM, making the branch effectively private, like a

virtual disk. A shared branch is intended for use by multiple VMs. In a shared branch,

changes made from one VM are visible to the others, so these branches can be used for

sharing files, like a conventional network file system.

Non-persistent branches, whose contents do not survive across reboots are also pro-

vided, as are volatile branches, whose contents are never stored on a central server, and

are deleted upon migration. These features are especially useful for providing storage

for caches and cryptographic material that for efficiency or security reasons, respectively,

should not be stored or migrated.

Branches are detailed in Section 5.3.1.

Views Ventana is organized as a collection of file trees. To instantiate a VM, a view is

constructed by mapping one or more of these trees into a new file system name space. For

example, a base operating system, add-on applications, and user home directories might

each be mounted from a separate file tree.

This provides a basic model for supporting name space isolation and allows for rapid

synthesis of new virtual machines, without the space or managment overhead normally

associated with setting up a new virtual disk.
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Section 5.3.2 describes views in more detail.

Access Control File permissions in Ventana must satisfy two kinds of needs: those of

the guest OSes to partition functionality according to the guests’ own principals, and those

of users to control access to confidential information. Ventana provides two types of file

ACLs that satisfy these two kinds of orthogonal needs.

Ventana also offers branch ACLs which support common VM usage patterns, such as

one user granting others permission to clone a branch and modify the copy (but not the

original), and version ACLs which alleviate security problems introduced by file versioning.

Section 5.3.3 describes access control in Ventana.

Disconnected Operation Ventana allows for a very simple model of mobility by support-

ing disconnected operation, through a combination of aggressive caching and versioning.

Section 5.3.4 talks about disconnected operation in Ventana.

5.3.1 Branches

Some conventional file systems support versioning of files and directories. Details vary

regarding which versions are retained, when older versions are deleted, and how older

versions are named. However, in all of them, versioning is “linear,” that is, at any point in

each file has a unique latest version.

When versions form a tree that grows in more than one direction, the “latest version”

of a file can be ambiguous. The file system must provide a way for users to express where

in the tree to look for a file version.

To appreciate these potential ambiguities, consider an example. Ziggy creates a VM

and allows Yves, Xena, and Walt to each fork it a personalized version. The version tree

for a file personalized by each person would look something like Figure 5.2(a). If an access

to a file by default refers to the latest version anywhere in the tree, then each person’s

changes would appear in the others’ VMs. Thus, the tree of versions would act like a chain

of linear versions.

In a different situation, suppose Vince and Uma use a shared area in the file system

for collaboration. Most of the time, they do want to see the latest version of a file. Thus,
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Figure 5.2: Trees of file versions when (a) Ziggy allows Yves, Xena, and Walt to fork
personalized versions of his VM; (b) Vince and Uma collaboratively edit a file; and (c)
Ziggy’s VM has been forked by Yves, as in (a), but not yet by Xena or Walt.

the version history of such a file should be linear, with each update following up on the

previous one, resembling Figure 5.2(b).

The essential difference between these two cases is intention. The version tree alone

cannot distinguish between desires for shared or personalized versions of the file system

without knowledge of intention.

Consider another file in Ziggy’s VM. If only Yves has created a personalized version

of the file, then the version tree looks like Figure 5.2(c). The shape of this tree cannot be

distinguished from an early version of Figure 5.2(a) or (b). Thus, Ventana must provide a

way for users to specify their intentions.
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Private and Shared Branches

Ventana introduces branches to resolve version ambiguity. A branch is a linear chain in the

tree of versions. Because a branch is linear, the latest version or the version at a particular

time is unambiguous for a given file in a specified branch.

A branch begins as an exact copy of the contents of some other branch at the current

time, or at a chosen earlier time. After creation, the new branch and the branch that was

copied are independent, so that modifying one has no effect on the other.

Branches are created by copying. Thus, multiple branches may contain the same ver-

sion of a file. Therefore, for a file access to be unambiguous, both a branch and a file must

be specified. Mounting a tree in a virtualization aware file system requires specifying the

branch to mount.

If a single client wants a private copy of the file tree, a private branch is created for its

exclusive use. Like a file system on a virtual disk, a private branch will only be modified

by a single client in a single VM, but in other respects it resembles a conventional network

file system. In particular, access to files by entities other than the guest that “owns” the

branch is easily possible, enabling centralized management such as scanning for malware,

file backup, and tracking VM version histories.

If multiple clients mount the same branch of a Ventana file tree, then those clients see

a shared view of the files it contains. As in a conventional network file system, a change

made by one client in such a shared branch will be immediately visible to the others. Of

course, propagation of changes between clients is still subject to the ordinary issues of

cache consistency in a network file system.

The distinction between shared and private branches is simply the number of clients

expected to write to the branch. If necessary, centralized management tools can modify

files in a so-called “private” branch (e.g. to quarantine malware) but this is intended to be

uncommon. Either type of branch might have any number of read-only clients.

A single file might have versions in shared and private branches. For example, a shared

branch used for collaboration between several users might be forked off into a private

branch by another user for some experimental changes. Later, the private branch could

be discarded or consolidated into the shared branch.



CHAPTER 5. VIRTUALIZATION AWARE FILE SYSTEMS 43

Other Types of Branches

In addition to shared and private branches, there are several other useful qualifiers to attach

to file trees.

Files in a non-persistent branch are deleted when a VM is rebooted. These are useful

for directories of temporary files such as /tmp.

Files in a volatile branch are also deleted on reboot. They are never stored permanently

on the central server, and are deleted when a VM is migrated from one physical machine to

another. They are useful for caches (e.g. /var/cache on GNU/Linux) that need not be

migrated and for storing security tokens (e.g. Kerberos tickets) that should not reside on a

central server.

Maintaining any version history for some files is an inherent security risk [73]. For

example, the OpenSSL cryptography library stores a “random seed” file in the file system.

If this is stored in a snapshot, every time a given snapshot is resumed, the same random

seed will be used. In the worst case, we will see the same sequence of random numbers

on every execution. Even in the best case, its behavior may be easier to predict, and if old

versions are kept, then it may be possible to guess past behavior (e.g. keys generated in past

runs).

Ventana offers unversioned files as a solution. Unversioned files are never versioned,

whether linearly or in a tree. Changes always evolve monotonically forward with time.

Applications for unversioned files include storing cryptographic material, firewall rules,

password files, or any other configuration state where rollback would be problematic.

5.3.2 Views

Ventana is organized as a set of file trees, each of which contains related files. For exam-

ple, some file trees might contain root file systems for booting various operating systems

(Linux, Windows XP, . . . ) and their variants (Debian, Red Hat, SP1, SP2, . . . ). Another

might contain file systems for running various local or specialized applications. A third

would have a hierarchy for each user’s files.

Creating a new VM mainly requires synthesizing a view of the file system for the VM.

This is accomplished by mapping one or more trees (or parts of trees) into a new name



CHAPTER 5. VIRTUALIZATION AWARE FILE SYSTEMS 44

space. For example, the Debian root file system might be combined with a set of applica-

tions and user home directories. Thus, OSes, applications, and users can easily “mix and

match” in a Ventana environment.

Whether each file tree in a view is mounted in a shared or a private branch depends

on the user’s intentions. The root file system and applications could be mounted in private

branches to allow the user to update and modify his own system configuration. Alterna-

tively, they could be mounted in shared branches (probably read-only) to allow maintenance

to be done by a third party. In the latter case, some parts of the file system would still need

to be private, e.g. /var under GNU/Linux. Home directories would likely be shared, to

allow the user to see a consistent view of his and others’ files regardless of the VM viewing

them.

5.3.3 Access Control

Access control is different in virtual disks and network file systems. On a virtual disk, the

guest OS controls every byte. The guest OS is responsible for tracking ownership and per-

missions and making access control decisions in the file system. The virtual disk itself has

no access control responsibility. A VAFS cannot use this scheme, because allowing every

guest OS to access any file, even those that belong to other VMs, is obviously unacceptable.

At a minimum, there must be enough control in the system to prevent abuse.

Access control in a conventional network file system is the reverse of the situation for

a virtual disk. The file server is ultimately in charge of access control. As a network file

system client, a guest OS can deny access to its own processes, but it cannot override the

server’s refusal to grant access. Commonly, NFS servers deny access as the superuser

(“squash root”) and CIFS and AFS servers grant access only via principals authenticated

to the network.

This style of access control is also, by itself, inappropriate in a VAFS. Ventana should

not deny a guest OS control over its own binaries, libraries, and applications. If these were,

for example, stored on an NFS server configured to “squash root,” the guest OS would not

be able to create or access any files as the superuser. If they were stored on a CIFS or AFS

server, the guest OS would only be able to store files as users authenticated to the network.
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In practice this would prevent the guest from dividing up ownership of files based on their

function (system binaries, print server, web server, mail server, . . . ), as many systems do.

Ventana solves the problem of access control through multiple types of ACLs: file

ACLs, version ACLs, and branch ACLs. For any access to be allowed, it must be permitted

by all three applicable ACLs. Each kind of ACL serves a different primary purpose. The

three types are described individually below.

File ACLs

File ACLs provide protection on files and directories that users conventionally expect and

OSes conventionally provide. Ventana supports two types of file ACLs that provide or-

thogonal privileges. Guest file ACLs are primarily for guest OS use. Guest OSes have the

same level of control over guest file ACLs that they do over permissions in a virtual disk.

In contrast, server file ACLs provide protection that guest OSes cannot bypass, similar to

permissions enforced by a conventional network file server.

Both types of file ACLs apply to individual files. They are versioned in the same way

as other file metadata. Thus, revising a file ACL creates a new version of the file with the

new file ACL. The old version of the file continues to have the old file ACL.

Guest file ACLs are managed and enforced by the guest OS using its own rules and

principals. Ventana merely provides storage. These ACLs are expressed in the guest OS’s

preferred form. We have so far implemented only the 9-bit rwxrwxrwx access control

lists used by the Unix-like guest OSes. Guest file ACLs allow the guest OS to divide up

file privileges based on roles.

Server file ACLs, the other type of file ACL, are managed and enforced by Ventana

and stored in Ventana’s own format. Server file ACLs allow users to control access to files

across all file system clients.

Version ACLs

A version ACL applies to a version of a file. They are stored as part of a version, not as file

metadata, so that changing a version ACL does not create a new file version. Every version

of a file has an independent version ACL. Conversely, when multiple branches contain the
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same version of a file, that single version ACL applies in each case. Version ACLs are not

versioned themselves. Like server file ACLs, version ACLs are enforced by Ventana itself.

Version ACLs are Ventana’s solution to a class of security problem common to all

versioning file systems. Suppose Terry creates a file and writes confidential data to it. Soon

afterward, Terry realizes that the file’s permissions incorrectly allow Sally to read it, so he

corrects the permissions. In a file system without versioning, the file would then be safe

from Sally, as long as she had not already read it. If the permissions on older file versions

are fixed, however, Sally can still access the older version of the file.

A partial solution to Terry’s problem is to grant access to older versions based on the

current version’s permissions, as Network Appliance filers do [78]. Now, suppose Terry

edits a file to remove confidential information, then grants read permission to Sally. Under

this rule, Sally can then view the older, confidential versions of the file, so this rule is also

flawed.

Another idea is to add a permission bit to each file’s metadata that determines whether

a user may read a file once it has been superseded by a newer version, as in the S4 self-

securing storage system [79]. Unfortunately, modifying permissions creates a new version

(as does any change to file metadata) and only the new version is changed. Thus, this

permission bit is effective only if the user sets it before writing confidential data, so it

would not protect Terry.

Only two version rights exist. The “r” (read) version right is Ventana’s solution to

Terry’s problem. At any time, Terry can revoke the read right on old versions of files he

has created, preventing access to those file versions. The “c” (change) right is required to

change a version ACL. It is implicitly held by the creator of a version. (Any given file

version is immutable, so there is no “write” right.)

Branch ACLs

A branch ACL applies to all of the files in a particular branch and controls access to current

and older versions of files. Like version ACLs, branch ACLs are accessed with special

tools and enforced by Ventana.

The “n” (newest) branch right permits read access to the latest version of files in a

branch. It also controls forking the latest version of the branch.
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In addition to “n”, the “w” (write) right is required to modify any files within a branch.

A user who has “n” but not “w” may fork the branch. Then, as owner of the new branch,

he may change its ACL and modify the files in the new branch. This does not introduce

a security hole because the user may only modify the files in the new branch, not those in

the old branch. The user’s access to files in the new branch are, of course, still subject to

Ventana file ACLs and version ACLs.

The “o” (old) right is required to access old versions of files within a branch. This right

offers an alternative solution to Terry’s problem of insecure access to old versions. If Terry

controls the branch in which the old versions were created, then he can use its branch ACL

to prevent other users from accessing old versions of any file in the branch. This is thus a

simpler but less focused approach than adjusting the appropriate version ACL.

The “c” (change) right is required to change a branch ACL. It is implicitly held by the

owner of a branch.

5.3.4 Disconnected Operation

Virtual disks can be used while disconnected from the network, as long as the entire disk has

been copied onto the disconnected machine. Thus, for a virtualization aware file system to

be as widely useful as a virtual disk, it must also gracefully tolerate network disconnection.

Research in network file systems has identified a number of features required for suc-

cessful disconnected operation [77, 80, 81]. Many of these features apply to Ventana in the

same way as conventional network file systems. Ventana, for example, can cache file sys-

tem data and metadata on disk, which allows it to store enough data and metadata to last the

period of disconnection. Our prototype caches entire files, not individual blocks, to avoid

the need to allow reading only the cached part of a file during disconnection, which at best

would be surprising behavior. Ventana can also buffer changes to files and directories and

write them back upon reconnection. Some details of these features of Ventana are included

in the description of our prototype (see Section 5.4).

Handling conflicts, that is, different changes to the same files, is a thorny issue in a de-

sign for disconnected operation. Fortunately, earlier studies of disconnection have shown

conflicts to be rare in practice [77]. In Ventana conflicts may be even rarer, because they
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cannot occur in private branches. Therefore, Ventana does not try to intelligently handle

conflicts. Instead, changes by disconnected clients are committed at the time of reconnec-

tion, regardless of whether those files have been changed in the meantime by other clients,

and announces what it is doing to the user. If manual merging is needed in shared branches,

it is still possible based on old versions of the files. To make it easy to identify file ver-

sions just before reconnection, Ventana creates a new branch just before it commits the

disconnected changes.

5.4 Implementation Details

To show that our ideas can be realized in a practical and efficient way, we developed a

simple prototype of Ventana. This section describes the prototype’s design and use.

The Ventana prototype is written in C. We developed it under Debian GNU/Linux “un-

stable” on 80x86 PCs running Linux 2.6.x, using VMware Workstation 5.0 as VMM. The

servers in the prototype run as Linux user processes and communicate over TCP using the

GNU C library implementation of ONC RPC [82].

Figure 5.3 outlines Ventana’s structure, which is described in more detail below.

5.4.1 Server Architecture

A conventional file system operates on what Unix calls a block device, that is, an array of

numbered blocks. Our prototype is instead layered on top of an object store [83, 84]. An

object store contains objects, sparse arrays of bytes numbered from zero to infinity, similar

to files. In the Ventana prototype, objects are immutable.

The object store consists of one or more object servers, each of which stores some

of the file system’s objects and provides a network interface for storing new objects and

retrieving the contents of old ones. Objects are identified by randomly selected 128-bit

integers called object numbers. Object numbers are generated randomly to allow them to be

chosen without coordination between hosts. Collisions are unlikely as long as significantly

fewer than 264 have been generated, according to the “birthday paradox” [85]. Ventana

does not attempt to detect collisions.
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Figure 5.3: Structure of Ventana. Each machine whose VMs use Ventana runs a host
manager. The host manager talks to the VMs over NFSv3 and to Ventana’s centralized
metadata and object servers over a custom protocol.

Each version of a file’s data or metadata is stored as an object. When a file’s data or

metadata is changed, the new version is stored as a new object under a new object number.

The old object is not changed and it may still be accessed under its original object number.

However, this does not mean that every intermediate change takes up space in the object

store, because client hosts (that is, machines that run Ventana clients in VMs) consolidate

changes before they commit a new object.

As in an ordinary file system, each file is identified by an inode number, which is

again a 128-bit, randomly selected integer. Each file may have many versions across many

branches. When a client host needs to know what object stores the latest version of a file

in a particular branch, it consults the version database by contacting the metadata server.

The metadata server maintains the version database that tracks the versions of each file, the

branch database that tracks the file system’s branch structure, the database that associates

branch names and numbers, and the database that stores VM configurations.
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Scalability

The metadata server’s databases are implemented using Berkeley DB, an embedded database

engine that supports single-master replication across an arbitrary number of hosts. Single-

master replication should allow Ventana to scale to the point where write requests over-

whelm the master server. Because most metadata server RPC requests are read-only, over-

whelming a master requires a large number of clients. Moreover, only writes to a shared

branch have any urgent need to be committed to the metadata server, so other writes may

be delayed if the metadata server is busy. Client-side caching also reduces load on the

metadata and object servers.

Objects can be distributed among any number of object servers. The object server used

to store a object is selected based on a hash of the object number, which tends to evenly

distribute objects across the available object servers.

Availability

If a Berkeley DB master server fails, the remaining metadata servers may elect a new

master using the algorithm built into Berkeley DB. If a network partition occurs with at

least n/2 + 1 out of n metadata servers in one partition, then that partition, similarly,

can elect a new master if necessary. Upon recovery in either case, the metadata servers

automatically synchronize.

Object servers may also be replicated for availability. A hash of the object number can

be used to select the object servers on which to store the object. If each object is stored on m

object servers, then Ventana can tolerate loss of m− 1 or fewer object servers without data

loss. Because objects are immutable, there is no need for protocols that ensure consistency

between copies of an object.

5.4.2 Client Architecture

The host manager is the client-side part of the Ventana prototype. One copy of the host

manager runs on each platform and services any number of local client VMs. Our prototype

does not encapsulate the host manager itself in a VM.
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For compatibility with existing clients, the host manager includes a NFSv3 [86] server

for clients to use for file access. NFSv3 is both easy to implement and widely supported.

Thus, any client operating system that supports NFSv3 can use a Ventana file system, in-

cluding most Unix-like operating systems and Windows (with Microsoft’s free Services for

Unix).

The host manager maintains in-memory and on-disk caches of file system data and

metadata. Objects may be cached indefinitely because they are immutable. Objects are

cached in their entirety to simplify implementing the prototype and to enable disconnected

operation (see Section 5.4.2). Records in the version and branch databases are also im-

mutable, except for the ACLs they include, which change rarely. In a shared branch, records

added to the version database to announce a new file version are a cache consistency issue,

so the host manager checks the version database for new versions on each access (except

when disconnected). In a private branch, normally only one client modifies the branch at

a time, so that client’s host manager can cache data in the branch for a long time (or until

the client VM is migrated to another host), although other hosts should check for updates

more often.

The host manager also buffers file writes. When a client writes a file, the host manager

writes the modified file to the local disk. Further changes to the file are also written to the

same file. If the client requests that writes be committed to stable storage, e.g. to allow the

guest to flush its buffer cache or to honor an fsync call, then the host manager commits

the modified files to the local disk. Commitment does not perform a round trip on a physical

network.

Branch Snapshots

After some amount of time, the host manager takes a snapshot of outstanding changes

within a branch. Users can also explicitly create (and optionally name) branch snapshots.

A snapshot of a branch is created simply by forking the branch. Forking a branch copies

its content, so this has the desired effect. In fact, copying occurs on a copy-on-write basis,

so that the first write to any of the files in the snapshot creates and modifies a new copy of

the file. Creating a branch also inserts a record in the branch database.

After it takes a snapshot, the host manager uploads the objects it contains into the object
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store. Then, it sends records for the new file versions to a metadata server, which commits

them to the version database in a single atomic transaction. The changes are now visible to

other clients.

The host manager assumes that private branch data is relatively uninteresting to clients

on other hosts, so it takes snapshots in private branches relatively rarely (every 5 minutes).

On the other hand, other users may be actively using files in shared branches, so the host

manager takes snapshots often (every 3 seconds).

Because branch snapshots are actually branches themselves, older versions of files can

be viewed using regular file commands by first adding the snapshot branch to the view in

use. Branches created as snapshots are by default read-only, to reduce the chance of later

confusion if a file’s “older version” actually turns out to have been modified.

Views and VMs

Multiple branches can be composed into a view. Ventana describes a view with a simple

text format that resembles a Unix fstab, e.g.:

debian:/ / shared,ro
home-dirs:/ /home shared
bob-version:/ /proj private

Each line describes a mapping between a branch, or a subset of a branch, and a directory

within the view. We say that each branch is attached to its directory in the view.1

A VM is a view plus configuration parameters for networking, system boot, and so on.

A VM could be described by the view above followed by these additional options:

-pxe-kernel debian:/boot/vmlinuz
-ram 64

Ventana provides a utility to start a VM based on such a specification. Given the above

VM specification, it would set up a network boot environment (using the PXE protocol)

to boot the kernel in /boot/vmlinuz in the debian branch, then launch VMware

Workstation for the user to allow the user to interact with the VM.
1We use “attach” instead of “mount” because mounts are implemented inside an OS, whereas the guest

OS that uses Ventana does not implement and is not aware of the view’s composition.
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VM Snapshots Ventana supports snapshots of VMs in just the same way as it supports

snapshots of branches.2 A snapshot of a VM is a snapshot of each branch in the VM’s view

combined with a snapshot of the VM’s runtime state (RAM, device state, . . . ). To create

a snapshot, Ventana snapshots the branches included in the VM, copies the runtime state

file written by Workstation into Ventana as an unnamed file, and saves a description of the

view and a pointer to the suspend file.

Later, another Ventana utility may be used to resume from the snapshot. When a VM

snapshot is resumed, private branches have the contents that they did when the snapshot was

taken, and shared branches are up-to-date. Ventana also allows resuming with a “frozen”

copy of shared branches as of the time of the snapshot. Snapshots can be resumed any

number of times, so resuming forks each private branch in the VM for repeatability.

Disconnected Operation

The host manager supports disconnected operation, that is, file access is allowed even with-

out connectivity to the metadata and object server. Of course, access is degraded during

disconnection: only cached files may be read, and changes in shared branches by clients on

the other hosts are not visible. Write access is unimpeded. Disconnected operation is im-

plemented in the host manager, not in clients, so all clients support disconnected operation.

We designed the prototype with disconnected operation in mind. Caching eliminates the

need to consult the metadata and object servers for most operations, and on-disk caching

allows for a large enough cache to be useful for extended disconnection. Whole-object

caching avoids surprising semantics that would allow only part of a file to be read. Write

buffering allows writing back changes to be delayed until reconnection.

We have not implemented user-configurable “hoarding” policies in the prototype. Im-

plementing them as described by Kistler et al. [77] would be a logical extension.

Fixing NFS Warts

We used NFSv3 [86] as Ventana’s file system access protocol because it is widely supported

and because it is relatively easy to implement. However, it has a few warts that are difficult
2VMware Workstation has its own snapshot capability. Ventana’s snapshot mechanism demonstrates VM

snapshots might be integrated into a VAFS.
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to avoid in a conventional file system design. This section describes how we designed

around these problems in Ventana.

As discussed in Section 6.2.3, a more advanced implementation would, for perfor-

mance, want to implement a protocol faster than NFSv3. However, any such protocol

will require support to be added to guest OSes, so even such an implementation would

want to support NFSv3 (or even NFSv2) for backward compatibility, in which case these

notes would still be relevant.

Directory Reads The NFSv3 READDIR RPC read a group of directory entries. Each

entry returned includes, among other fields, a file name and a “cookie” that the client can

pass to a later call to indicate where to start reading. Most servers encode each cookie as

a byte offset from the beginning of the directory. The READDIR response also includes a

“cookie verifier” that the client passes back in later calls. The cookie verifier allows the

server to return a “bad cookie” error if the directory changes between two READDIR calls.

The NFSv3 specification suggests using the directory’s modification time as the cookie

verifier.

Unfortunately, NFS clients do not gracefully handle bad cookies. The Linux NFSv3

client, for example, passes the error to user programs, many of which give up on reading

the rest of the directory. Servers should therefore report bad cookies rarely if ever, instead

recovering from them as best they can. Usually this amounts to rounding the cookie to the

nearest start of a directory entry, but this approach can return the same name twice within

a directory, or omit names.

We designed the prototype’s directory format to avoid the problem. Each directory

entry includes a file name and an inode number, as in a traditional Unix file system, plus a

“sequence number” that identifies when it was added. Each entry added to a given directory

receives the next larger sequence number.

In a directory, then, cookies and cookie verifiers are sequence numbers. An initial

READDIR returns the current maximum sequence number as the cookie verifier. Later

calls skip over entries whose sequence numbers are greater than the cookie verifier. Thus,

entries added after the first READDIR are not returned to the client. No duplicates will

be returned, and no entries will be omitted. Calls to READDIR that restart reading the
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ubuntu:/ / shared,ro
home-dirs:/ /home shared

none /tmp non-persistent
12ff2fd27656c7c7e07c5ea1e2da367f:/var /var private

cad-soft:/ /opt/cad-soft shared,ro
common:/etc/resolv.conf /etc/resolv.conf shared,ro
common:/etc/passwd /etc/passwd shared,ro

8368e293a23163f6d2b2c27aad2b6640:/etc/hostname /etc/hostname private
b6236341bd1014777c1a54a8d2d03f7c:/etc/ssh/host_key /etc/ssh/host_key unversioned

Figure 5.4: Partial specification of the view for Bob’s basic VM.

directory from the beginning receive a new cookie verifier, so new entries are not invisible

to clients forever.

Deleted Files In a Unix file system, a file persists as long as any process has it open,

regardless of whether all of the names for the file have been deleted. NFSv3, however, has

no notion of an “open” file, so that when the last name for a file is deleted, the file is gone,

and its file handle becomes invalid. Some NFSv3 clients, to avoid the problem, rename

an open file to a new hidden name instead of removing it, as suggested by the NFSv3

specification.

Ventana cannot prevent clients from attempting to work around this issue. However,

it does not require the workaround: files in Ventana persist beyond the deletion of their

final link, in the form of older versions. An NFSv3 file handle for a deleted file in Ventana

continues to function in the same way as a file handle for an existing file.

5.5 Usage Scenario

This section presents a scenario for use of Ventana and shows how, in this setting, Ventana

offers a better solution than both virtual disks and network file systems.

5.5.1 Scenario

We set our scene at Widgamatic, a manufacturer and distributor of widgets.
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carl-debian:/ / private
home-dirs:/ /home shared

none /tmp non-persistent
common:/etc/resolv.conf /etc/resolv.conf shared,ro
common:/etc/passwd /etc/passwd shared,ro

b6236341bd1014777c1a54a8d2d03f7c:/etc/ssh/host_key /etc/ssh/host_key unversioned

Figure 5.5: Partial specification of the view for Carl’s custom VM.

Alice the Administrator

Alice is Widgamatic’s system administrator in charge of virtual machines. Software used at

Widgamatic has diverse requirements, and Widgamatic’s employees have widely varying

preferences. Alice wants to accommodate everyone as much as she can, so she supports var-

ious operating systems: Debian, Ubuntu, Red Hat, and SUSE distributions of GNU/Linux,

plus Windows XP and Windows Server 2003. For each of these, Alice creates a shared

branch and installs the base OS and some commonly used applications. She sets the branch

ACLs to allow any user to read, but not write, these branches.

Alice creates common, a second shared branch, to hold files that should be uniform

across the company, such as /etc/hosts and /etc/resolv.conf. Again, she sets

branch ACLs to grant other users read-only access.

Alice also creates a shared branch for user home directories, called home-dirs, and

adds a directory for each Widgamatic user in the root of this branch. Alice sets the branch

ACL to allow any user to read or write the branch, and server file ACLs so that, by default,

each user can read or write only his (or her) home directory. Users can of course modify

server file ACLs in their home directories as needed.

Bob’s Basic VM

Bob is a Widgamatic user with basic needs. Bob uses a utility written by Alice to create a

Linux-based VM primarily from shared branches. Figure 5.4 shows part of the specification

written by this utility.

The root of Bob’s VM is attached to the Ubuntu shared branch created by Alice. This

branch’s ACL prevents Bob modifying files in the branch (it is attached read-only besides).

The Linux file system is well suited for this situation, because its top-level hierarchies
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segregate files based on whether they can be attached read-only during normal system op-

eration. The /usr tree is an example of a hierarchy that normally need not be modifiable.

The /home and /tmp trees are the most prominent examples of hierarchies that must

be writable, so Bob’s VM attaches a writable shared branch and a non-persistent branch,

respectively, at these points. Keyword none in place of a branch name in /tmp’s entry

causes an initially empty branch to be attached.

The /var hierarchy must be writable and persistent, and it cannot be shared between

machines. Thus, Alice’s utility handles /var by creating a fork of the Ubuntu branch,

then attaching the forked branch’s /var privately in the VM. The utility does not give the

forked branch a name, so the VM specification gives the 128-bit branch identifier as 32

hexadecimal digits.

Bob needs to use the company’s CAD software to design widgets, so the CAD software

distribution is attached into his VM.

Most of the VM’s configuration files in /etc receive their contents from the Ubuntu

branch attached at the VM’s root. Some, e.g. /etc/resolv.conf and /etc/passwd

shown here, are attached from Alice’s “common files” branch. This allows Alice to update

a file in just that branch and have the changes automatically reflected in every VM. A few,

such as /etc/hostname shown here, are attached from private branches to allow their

contents to be customized for the particular VM. Finally, data that should not be versioned

at all, such as the private host key used to identify an SSH server, is attached from an

unversioned branch. The latter two branches are, like the /var branch, unnamed.

Bob’s VM, and VMs created in similar ways, would automatically receive the benefits

of changes and updates made by Alice as soon as she made them. They would also see

changes made by other users to their home directories as soon as they occur.

Carl’s Custom VM

Carl wants more control over his VM. He prefers Debian, which is available as a branch

maintained by Alice, so he can base his VM upon Alice’s. Carl forks a private branch from

Alice’s Debian branch and names the new branch carl-debian.

Carl integrates his branch into a VM of his own, using a specification that in part looks

like Figure 5.5. Carl could write this specification by hand, or he might choose to start from
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one, like Bob’s, generated by Alice’s utility. Using a private branch as root directory means

that Carl need not attach private branches on top of /var or /etc/hostname, making

Carl’s specification shorter than Bob’s.

Even though Carl’s base operating system is private, Carl’s VM still attaches many

of the same shared branches that Bob’s VM does. Shared home directories and common

configuration files ease Carl’s administrative burden just as they do Bob’s. He could choose

to keep private copies of these files, but to little obvious benefit.

Carl must do more of the work of administering his own system, because Alice’s

changes to shared branches do not automatically propagate to his private branch. Carl

could use Ventana to observe how the parent debian branch has changed since the fork,

or Alice could monitor forked branches to ensure that important patches are applied in a

timely fashion.

Alice in Action

One morning Alice reads a bulletin announcing a critical security vulnerability in Mozilla

Firefox. Alice must do her best to make sure that the vulnerable version is properly patched

in every VM. In a VM environment based on virtual disks, this would be a daunting task.

Ventana, however, reduces the magnitude of the problem considerably.

First, Alice patches the branches that she maintains. This immediately fixes VMs that

use her shared branches, such as Bob’s VM.

Second, Alice can take steps to fix others’ VMs as well. Ventana puts a spectrum of

options at her disposal. Alice could do nothing and assume that Bob and Carl will act

responsibly. She could scan VMs for the insecure binary and email their owners (she can

even check up on them later). She could patch the insecure binaries herself. Finally, she

has many options for denying access to copies of the insecure binary: use a server file ACL

to deny reading or executing it, use a Ventana version ACL to prevent reading it even as

the older version of a file, use a branch ACL to deny any access to the branch that contains

it (perhaps appropriate for long-unused branches), and so on. Alice can take these steps

for any file stored in Ventana, whether contained in a VM that is powered on or off or

suspended, or even if it is not in any VM or view at all.
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Third, once the immediate problem is solved, Alice can work to prevent its future recur-

rence. She can configure a malware scanner to examine each new version of a file added

to Ventana as to whether it is the vulnerable program and, if so, alert Alice or its owner

(or take some other action). Thus, Alice has reasonable assurance that if this particular

problem recurs, it can be quickly detected and fixed.

5.5.2 Benefits for Widgamatic

We now consider how Alice, Bob, Carl, and everyone else at Widgamatic benefit from us-

ing Ventana instead of virtual disks. We use virtual disks as our main basis of comparison

because Ventana’s advantages over conventional distributed file systems are more straight-

forward: they are the versioning, isolation, and encapsulation features that we intentionally

added to it and have already described in detail.

Central Storage

It’s easy for Bob or Carl to create virtual machines. When virtual disks are used, it’s also

easy for Bob or Carl to copy them to a physical machine or a removable medium, then lose

or forget about the machine or the medium. If the virtual machine is rediscovered later, it

may be missing fixes for important security problems that have arisen in the meantime.

Ventana’s central storage makes it more difficult to lose or entirely forget about VMs,

heading off the problem before it occurs. Other dedicated VM storage systems also yield

this benefit [87, 74].

Looking Inside Storage

Alice’s administration tasks can benefit from “looking inside” storage. Consider backup.

Bob and Carl want the ability to restore old versions of files, but Alice can easily back up

virtual disks only as a collection of disk blocks. Disk blocks are opaque, making it hard for

Bob or Carl even to determine which version of a virtual disk contains the file to restore.

Doing partial backups of virtual disks, e.g. to exclude blocks from deleted temporary files

or paging files, is also difficult.
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File-based backup, partial backup, and related features can be implemented for virtual

disks, but only by mounting the virtual disk or writing code to do the equivalent. In any

case, software must have an intimate knowledge of file system structures and must be

maintained as those structures change among operating systems and over time. Mounting

an untrusted disk can itself be a security hole [88].

On the other hand, Ventana’s organization into files and directories gives it a higher

level of structure that makes it easy to look inside a Ventana file system. Thus, file-based

backup and restore requires no special effort in Ventana. (Of course, in Ventana it is natural

to use versioning to access file “backups” and ensure access by backing up Ventana servers’

storage.)

Sharing

Sharing is an important feature of storage systems. Bob and Carl might wish to collaborate

on a project, or Carl might ask Alice to install some software in his VM for him. Virtual

disks make sharing difficult. Consider how Alice could access Carl’s files if they were

stored on a virtual disk. If Carl’s VM were powered on or suspended, modifying his file

system would risk the guest OS’s integrity, because the interaction with the guest’s data

and metadata caches would be unpredictable. Even reading Carl’s file system would be

unreliable while it was changing, e.g. consider the race condition if a block from a deleted

directory was reused to store an ordinary file block.

On the other hand, Ventana gives Alice full read and write access to virtual machines,

even those that are online or suspended. Alice can examine or modify Carl’s files, whether

the VM or VMs that use them are running, suspended, or powered off, and Bob and Carl

can work together on their project without introducing any special new risks.

Security

If Widgamatic’s VMs were stored in virtual disks, Alice would have a hard time scanning

them for malware. She could request that users run a malware scanner inside each of their

VMs, but it would be difficult for her to enforce this rule or ensure that the scanner was

kept up-to-date. Even if Bob and Carl carefully followed her instructions, VMs powered
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on after being off for a long time would be susceptible to vulnerabilities discovered in the

meantime until they were updated.

Ventana allows Alice to deploy a scanner that can examine each new version of a file

in selected branches, or in all branches. Conversely, when new vulnerabilities are found, it

can scan old versions of files as well as current versions (as time is available). If malware

is detected in Bob’s branch, the scanner could alert Bob (or Alice), delete the file, change

the file’s permission, or remove the virus from the file. (Even in a private branch, files may

be externally modified, although it takes longer for changes to propagate in each direction.)

Ventana provides another important benefit for scanners: the scanner operates in a pro-

tection domain separate from any guest operating system. When virtual disks store VMs,

scanners normally run as part of the guest operating system because, as we’ve seen, even

read-only access to active virtual disks has pitfalls. But this allows a “root kit” to subvert

the guest operating system and the malware scanner in a single step. If Alice runs her

scanner in a different VM, it must be compromised separately. Alice could even configure

the scanner to run in non-persistent mode, so rebooting it would temporarily relieve any

compromise, although of course not the underlying vulnerability.

A host-based intrusion detection system could use a “lie detector” test that compares

the file system seen by programs running inside the VM against the file system in Ventana

to detect root kits, as in LiveWire [89].

Access to Multiple Versions

Suppose Bob wants to look at the history of a document he’s been working on for some

time. He wants to retrieve and compare all its earlier versions. One option for Bob is

to read the old versions directly from older versions of the virtual disk, but this requires

accurate interpretation of the file system, which is difficult to maintain over time. A more

likely alternative for Bob is to resume or power on each older version of the VM, then use

the guest OS to copy the file in that old VM somewhere convenient. Unfortunately, this

can take a lot of time, especially if the VM has to boot, and every older version takes extra

effort.

With Ventana, Bob can attach all the older versions of his branch directly to his view.

After that, the different versions can be accessed with normal file commands: diff to
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view differences between versions, grep to search the history, and so on. Bob can also

recover older versions simply by copying them into the his working branch.



Chapter 6

Evaluation

The previous chapters described the design of our extreme paravirtualization and virtualiza-

tion aware file system prototypes. This chapter evaluates these prototypes for performance,

code size, and portability. We evaluate the network and file system paravirtualization pro-

totypes separately from the Ventana virtualization aware file system prototype.

6.1 Extreme Paravirtualization

This section compares PON and POFS micro- and macro-benchmarks against conventional

paravirtualization approaches. We show that the performance penalty is minimal (under

4%) in most cases, and even demonstrate speed-ups in important special cases. We show

how the multi-core CPU architecture contributes to this performance. We also report on

the size of the code to implement PON and POFS.

We used Xen, a free software hypervisor, to obtain the numbers reported in this section.

Xen provides the inter-VM communication primitives needed by PON and POFS “out of

the box”: static shared memory and page sharing via Xen grant tables, and remote inter-

rupts via Xen event channels. However, Xen is designed to provide these communication

primitives between application VMs (called DomUs) and a privileged VM (called Dom0),

not between different DomU VMs, so we implemented a new “virtual shared memory”

Xen device that provides a rendezvous point for VMs to connect with each other.

Our test machine was configured with 8 GB RAM. It ran Xen “unstable” in 32-bit PAE

63
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mode. Both privileged (Dom0) and user (DomU) VMs used Debian GNU/Linux “unstable”

as operating system, using Linux kernel 2.6.18, which was the latest kernel with an official

Xen patch set at time of testing. Each user VM was configured with 768 MB RAM, one

4 GB pre-allocated virtual disk, and one virtual CPU. We also supplied 1 GB swap to each

VM, although our tests did not exercise it.

Our VMs used the ext3 file system on physical and virtual disks. Reported timings

are minimum observed values across multiple runs.

6.1.1 Processor Configuration

Our test machine was configured with a pair of dual-core 2.33 GHz Intel Xeon 5140 pro-

cessors. This reflects the start of a trend for commodity servers, and to a lesser extent

commodity desktop machines, toward an increasing number of processor cores. Quad-

core processors are available today to give a 4-CPU server a total of 16 cores. In coming

years the number of cores will continue to increase: Intel, for example, has predicted the

availability of 80-core CPUs by 2011, according to CNET [90].

There are as yet few operating systems and applications that makes good use of these

CPU resources. Our results show one way to take advantage of multi-core CPUs to reduce

performance overheads traditionally seen for communication on a single-processor ma-

chine. We believe that the ability to quickly schedule a decomposed piece of an operating

system will mean that the overheads of communication will be manageable, particularly in

comparison to the benefits.

Supporting this claim, the measurements reported in the following sections, which were

taken with each virtual CPU assigned dedicated use of a physical processor core, reflect

considerable improvement over single-processor results. This is most noticeable in the

networking tests, in which the timings increase by as much as 100% when only a single

core is used.

This argument in favor of dedicating a core to a service such as a networking stack

or a file system is reasonable when cores are not already put to good use, but it is less

attractive when they are already in high demand. The use of virtual machines for server

consolidation is an example of the latter, because an additional core can always be used to
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run an additional virtual machine.

For two reasons, however, we believe that this need not be a barrier to deployment

of extreme paravirtualization. First, extreme paravirtualization lends itself to going a step

beyond server consolidation, to service consolidation, because one device module on a

core can serve a large number of VM clients. Thus, the demand for cores is not doubled

or tripled but merely increased slightly. Furthermore, dedicating a core to a device may

significantly reduce CPU activity in other VMs, e.g. a dedicated network device module

handles all TCP timers on behalf of its VM clients, reducing the interrupt load on those

clients. In turn, this allow more VMs to run, and the result may be neutral or even a net

gain in terms of processor efficiency.

Second, in situations where large number of clients should not share a single device

module VM due to e.g. security or reliability concerns, some of the benefits of dedicated

cores may be obtainable through coscheduling, that is, scheduling a service VM and its

client VMs at the same time on separate cores [91]. The unit of scheduling becomes a

collection of VMs, instead of a single VM.

We compared our prototype’s performance against that of Xen’s paravirtual Ethernet

and virtual disk implementations. Xen, like Microsoft’s Viridian hypervisor, runs device

drivers in a separate VM that must be promptly scheduled to get high I/O performance.

This architecture is designed to take advantage of the trend to multicore CPUs, so to ensure

highest performance we dedicated a physical processor core for the virtual CPU of Dom0

that contains the device drivers.

Our approach would also benefit from a similar optimization so that the service VM

with the paravirtualized device and device driver would be promptly scheduled. Unfortu-

nately our Xen prototype service VM was not able to talk directly to the device and required

going through the driver Dom0. To avoid the introduction of context switches where the

real implementation would have none, we included an additional core for running the par-

avirtualized device’s VM. Although we are using a total of three cores we do not believe

we get any additional benefit over what the architecture would show with only two cores.

In fact, having to communicate with Dom0 to access the I/O device likely worsened our

performance compared to direct device access.
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6.1.2 Network Paravirtualization

This section compares our network extreme paravirtualization prototype against conven-

tional paravirtualization. First, we show that PON’s performance penalty for communicat-

ing over a TCP/IP network is at most 3% in bandwidth and latency. We also show that, for

the special case of communicating with a VM on the host, PON actually improves band-

width by up to 294% and reduced latency by up to 207%. Second, we show that this is

achieved with code much smaller than typical TCP/IP stacks.

TCP/IP Network Performance

We ran bandwidth and latency micro-benchmarks to compare PON and TCP/IP perfor-

mance. We used a VM with a conventionally embedded TCP/IP stack as our basis for

comparison. Our PON prototype was set up as shown in Figure 4.2 on page 28, connecting

an application VM to a PON paravirtualized network gateway VM. This allows the appli-

cation VM, which does not need to contain a TCP/IP implementation, to interact with a

TCP/IP network.

We implemented the gateway as a Linux kernel module that connects PON to the Linux

TCP/IP stack. To reduce the trusted code base to the minimum, production versions of

a gateway VM might be based on a stripped-down operating system. We configured net-

working identically in the gateway VM and the VM with conventional networking, except

for the presence of the gateway module.

The remote network target we used for these tests had hardware identical to our primary

test machine and ran Linux on bare hardware. It was directly connected to our primary test

machine over 1-Gb Ethernet, without an intervening hub or switch.

With each setup, we measured the time to transfer 100 MB of data to our second phys-

ical machine, using a pair of simple programs that call poll to wait for data to arrive or

for buffer space to become available and then read or write to send or receive data. We

varied both the number of streams among which data was divided and the size of the buffer

passed to read or write in a single system call, which we call the chunk size. We ran the

test for each combination of 1, 4, and 16 streams with 16-byte, 64-byte, 4-kB, and 64-kB

chunk sizes.
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Read and Write Chunk Size
Streams Protocol 16 byte 64 byte 4 kB 64 kB

1 PON 3.782 s 1.114 s .120 s .115 s
TCP 4.580 s 1.453 s .134 s .133 s

4 PON 3.757 s 1.113 s .127 s .116 s
TCP 4.401 s 1.453 s .137 s .131 s

16 PON 3.783 s 1.118 s .132 s .125 s
TCP 4.281 s 1.415 s .521 s .299 s

Table 6.1: Time to transfer 100 MB of data with PON and Linux TCP, for varying numbers
of parallel streams and read/write chunk sizes.

We also ran a second simple test to measure the latency of interactive protocols on each

setup. This test passes a 4-byte data segment back and forth across a connection as fast

as possible, repeating 100,000 times. A segment is transmitted as soon as the previous

one is received. Each segment simply contains an integer that is incremented on each

succeeding transmission to verify integrity. To ensure minimum latency, we disabled the

Nagle algorithm and TCP delayed acknowledgements.

In every case, our results show that PON has minimal impact. In both bandwidth and

latency, and in the bandwidth tests, for every tested combination of chunk size and number

of streams, PON had a 3% or smaller performance penalty, compared to the conventional

TCP/IP setup. We attribute this to reduced overhead in the PON gateway VM versus the

conventional setup: the gateway runs entirely within the kernel, without the overhead due

to system calls incurred by the conventional VM network stack.

To ensure that improvements in bandwidth and latency do not come at the expense of

CPU time, we also measured the CPU usage of PON versus Linux TCP. CPU usage of

PON was generally similar to, or slightly lower than, that of Linux TCP, except that it was

spread across two CPU cores instead of one.

Inter-VM Performance

In the special case where a pair of virtual machines on the same host wish to communicate

with one another, a PON link can connect them directly, with no need for a conventional
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network stack at all. We measured PON’s performance against the Linux TCP/IP imple-

mentation for this special case of data transfer.

Table 6.1 shows the time, in seconds, for each tested combination of number of streams

and chunk size, for PON and TCP/IP bulk transfers. In each case, PON achieves be-

tween 11% and 294% faster bulk transfers than TCP, despite PON’s simplicity. This is

primarily due to performance tuning specific to the PON environment (described in de-

tail below). Another factor is how PON shares memory directly between VMs, whereas

TCP/IP uses the Xen privileged VM (Dom0) as a trusted third party to pass around the

pages containing Ethernet frames.

As for latency, we measured PON to run our latency test in .918 s and Linux TCP

in 2.814 s. The TCP results seem to be primarily due to the extra level of indirection in

routing Ethernet frames through Xen’s Dom0: when we perform the test on Linux TCP

against localhost within a single VM, the Linux TCP time drops to .994 s.

As a fraction of their runtime, PON and TCP use about the same amount of CPU time.

Because PON runs faster than TCP, the total amount of CPU time needed to transfer a given

amount of data is much less with PON.

PON streams also save memory compared to TCP implementations, because data sent

over a PON stream does not need to be buffered by the sender to guard against data loss.

The PON prototype uses a fixed 64-kB buffer for each connection, because we found that

further increasing the buffer size caused little or no increase in bandwidth, although al-

though dynamically sized buffers could be implemented. In contrast, the Linux TCP im-

plementation in its default configuration scales up the size of the buffers in some of the

tests to multiple megabytes, although limiting its buffers to 64 kB has little impact on its

performance.

Tuning In implementing and tuning our PON implementation, we discovered a num-

ber of keys to performance. By far the most important of these is limiting the number of

remote interrupts exchanged between the communicating VMs. Remote interrupts are im-

plemented at the hardware level as inter-processor interrupts (IPIs). For small chunk sizes,

sending an IPI per chunk sent or received makes data transfer far too expensive, e.g. the
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Figure 6.1: Time to transfer 100 MB using a single PON stream, versus PON segment size,
for varying chunk sizes.

time to transfer 100 MB in 16-byte chunks increases 864% with a single stream, and sim-

ilarly with more streams. On the other hand, sending an IPI only when the 64-kB buffer

is filled also increases transfer time (by about 90%), because it prevents any overlap in

processing: the receiver is only able to start reading data when the sender has completely

filled the buffer, and vice versa.

Thus, we adopted the idea of a virtual “segment size,” a count of bytes sent or received

before sending a remote interrupt. A segment size equal to the chunk size is equivalent to

sending one IPI per chunk, a 64-kB segment size is equivalent to sending an IPI only after

filling the buffer, and sizes in between represent a spectrum of intermediate policies.

Figure 6.1 plots segment size versus transfer time for each chunk size in Table 6.1.

The graph shows that a 32 kB segment size yields the minimum transfer time for all tested
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chunk sizes. Thus PON uses a 32 kB segment size by default, and all other measurements

in this section were taken at this segment size.

An important secondary factor in performance is minimizing cache line bouncing be-

tween processor cores. Updating the send and receive buffer pointers in shared memory

once per chunk, for example, instead of once per segment, increases total transfer time at

small chunk sizes by up to 34%.

PON does not achieve its performance by reducing the number of times data is copied.

In fact, it copies data the same number of times as the Linux TCP implementation. PON

does two copies: the sender copies data into a shared segment and the receiver copies data

out of it of it. Linux TCP implementation does the same with Ethernet frames, which are

passed from VM to VM using Xen page transfer primitives. A number of ways to avoid

copying entirely for network I/O have been proposed [92], but we did not implement them

in our prototype; the best techniques require changes to applications, which our present

work avoids.

Furthermore, data copying is less costly than one might expect. Presumably, the linear

memory access pattern in the shared buffers is easily predicted by the CPU cores; we did

not use explicit prefetching to improve performance. With a 16-byte chunk size, profiling

(using Xenoprof [93]) shows that most of the cost of data transfer is system call and syn-

chronization overhead, and omitting data copying entirely (by commenting out the code

to copy data to and from the shared buffer) improves performance by 10% or less. With

64-kB chunks, the same experiment improves performance by about 85%, but this is only

about 53 ms faster for the 100 MB transfer.

Code Size

Our code for PON consists of a 2,000-line library that implements the PON protocol, plus

a 1,300-line set of wrappers that implement a Linux protocol family to make the PON

protocol available to user applications through the familiar socket interface. Thus, PON

does not add greatly to the size of the operating system. We believe that PON’s simplicity

and small size reflect positively on its potential for security.

PON adds much less code to an operating system than would a network stack. For

example, the Linux 2.6.18 implementation of IPv4, TCP, and UDP, not including header
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files, optional features, or core socket code, consists of more than 27,000 lines. Even lwIP,

a simple TCP/IP stack for embedded applications [94], contains over twice as many lines

of code as PON.

6.1.3 File System Paravirtualization

As for the paravirtual network implementation, we evaluate our paravirtual file system on

the basis of performance and code size.

Performance

We compared the performance of our file system implementation against virtual disk-based

file systems and network file systems. To compare against a virtual disk-based file system,

we used a file system on a Xen virtual block device. To compare against a network file

system, we used the Linux in-kernel NFS server and client running in a virtual machine on

the same host. Many Linux NFS parameters can be tweaked to improve performance (UDP

vs. TCP, read and write buffer size, asynchronous vs. synchronous writes, etc.) so we tried

a variety of configurations and reported, for each test, the best performance among the set

of configurations.

We configured POFS and the NFS server to serve a single, initially empty directory to

the client from a server VM virtual disk. For the virtual disk tests we used the same virtual

disk that stored other client VM data. All file systems were formatted as ext3.

Linux NFS is our primary performance target. POFS should perform better than NFS,

because NFS is designed to cope with lossy networks by buffering a copy of written data

in the client until it reaches disk, and with unreliable server software and hardware by

synchronously writing data to disk. It also requires more data copying than either virtual

disks or POFS.

The speed of operations in the virtual disk case represents an upper bound for POFS

performance, as POFS performs the same operations but with the cost of inter-VM com-

munication added. Because each file system operation must wait for a response from the

server before the client’s system call can return a success or failure code, POFS perfor-

mance is not significantly aided by parallelism between processors in the way that PON
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Storage System Build Create Extract
Virtual Disk 28.6 s .14 s .15 s
POFS 29.7 s .47 s .26 s
Linux NFS 31.4 s 1.67 s .34 s

Table 6.2: File system performance testing results.

performance was aided. (read and write system calls where the data is already mapped

and the file size does not change are exceptions.)

We ran the following tests:

Build Build GNU tar within the tested storage system. This is a macro-benchmark that

tests a mix of file system operations.

Create Copy the /dev hierarchy from a virtual disk to the tested storage system. This

hierarchy contains 5,567 files spread among only 13 directories, and very little data.

Thus, this is a micro-benchmark of file creation performance.

Extract Extract the GNU tar program source code from a 2.6 MB compressed tar

archive on a virtual disk into the tested storage system. This is a micro-benchmark

of file write performance.

Table 6.2 reports our performance results. We measured times in the guest OS using

the bash shell’s time command.

The results show that POFS consistently performs much better than NFS, especially for

the file creation micro-benchmark. Furthermore, in the macro-benchmark Build test, POFS

lagged behind a virtual disk based file system by less than 4%. For the Create and Extract

micro-benchmarks, POFS did lag significantly behind virtual disks, although it was still

much faster than Linux NFS in its fastest configuration. We expect that we could improve

micro-benchmark performance significantly with some optimization effort.

POFS used less CPU time than NFS. This was most pronounced in the Create bench-

mark, in which POFS used an average of 8.6% of the client CPU and 10.4% of the server

CPU, whereas NFS used 27.4% and 28.7%, respectively.
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Tuning Our measurements reflect one significant result of performance tuning, in which

the server CPU core runs in a loop that continually polls its clients’ request rings, instead

of using interrupts to wake up the server. Without this optimization, the Create test takes

.23 s longer, the Extract test .11 s longer, and the Build test .20 s longer. Because the file

server VM is used only for file service, and because its virtual CPU has a dedicated physical

processor core, polling does not degrade other VMs’ performance.

Using polling also in the client VM, to wait for responses to server requests, yields

a significant further increase in performance, but only at the expense of other processes

running in the client VM, so our measurements do not reflect client-side polling.

Code Size

Our implementation of the POFS client is a single C file under 1,000 line long. Thus, POFS

adds a minimal amount of code to the operating system. We believe that POFS’s simplicity

and small size reflect positively on its potential for security.

PON adds much less code to an operating system than would an ordinary local or net-

work file system. The Linux ext2 local file system, for example, is over 5,000 lines of

code, even without support for special features such as ACLs and extended attributes. The

9p file system, the smallest Linux network file system, is over 6,000 lines of code.

6.1.4 Portability

PON and POFS depend only on a few low-level communication primitives, which should

be implementable in a wide variety of VMMs. We used Xen as our environment for perfor-

mance testing, but we also created two other implementations of our shared memory library

for use in different environments, which helps to demonstrate the potential for portability

of extreme paravirtualization design among VMMs. All three implementations share the

same function interface, so that code that uses it for the most part need not be aware of

which version it is using. This variety of implementations helped to assure us that our

primitives are widely supportable.

Our second implementation builds the shared memory primitives out of inter-process

communication system calls: mmap, pipe, etc. Thus, it offers these primitives to ordinary
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user processes running in Linux, with no need for a VMM environment. This implementa-

tion provided a convenient, friendly platform for initial debugging and profiling.

The third implementation runs under QEMU [95], a virtual machine monitor that runs

as an ordinary user program on top of a host operating system. This version presents

shared memory to the guest OS as virtual PCI cards whose RAM can be mapped into the

virtual machine’s “physical” RAM. Remote interrupts correspond to virtual PCI interrupts.

QEMU, in turn, uses the POSIX version of the library to obtain the shared memory pro-

vided to the guest OS. QEMU slows code execution by a variable factor between 4 and 20,

making this version’s performance particularly difficult to evaluate.

6.2 Ventana

To demonstrate that the approach taken in Ventana, our virtualization-aware file system,

can yield reasonable performance, we ran tests comparing Ventana’s performance against

virtual disks and two conventional NFSv3 servers. Before we began testing, we considered

what we expected to see for relative performance of the four storage choices:

• Virtual disks should yield the highest absolute performance. Disks are not shared me-

dia, so their contents can be cached indefinitely by the guest OS. Operating systems

are carefully designed to minimize the impact of disk latency.

• The Linux 2.6.12 kernel-mode server, one of the conventional NFSv3 servers we

tested, should yield the next highest performance. The kernel server has the inherent

advantages over the other two NFSv3 servers that it can bypass system call and con-

text switching overhead. According to copyright notices, its development began in

1996, making it old enough to have been optimized and tuned. The kernel server also

uses hand-coded XDR handlers that allow it to encode and decode NFSv3 messages

faster than the other two servers.

• unfs3 0.9.13 [96], a user-mode NFSv3 implementation, should yield the next high-

est performance. Like Ventana, it is a user program, so it is also subject to system call

overheads, etc. This server had been in development for about two years when we
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Storage Boot Create Extract Build
Virtual Disk 64 2 2 172
Linux NFS 78 59 12 229
unfs3 130 * 10 239
Ventana 131 45 11 239

Table 6.3: Ventana performance testing results. Entries are times in seconds. *Could not
complete test.

ran our tests and appeared to be roughly a “beta” release. It has been in development

much longer than Ventana, so it should be better tuned and therefore faster.

• Ventana is likely to be the slowest NFSv3 server for the reasons above. Some basic

optimizations have been applied to Ventana, but it has not been extensively optimized

or tuned.

We used a single machine for testing, an IBM ThinkPad T30 with a 1.8 GHz Pentium 4

processor and 1 GB RAM. The NFSv3 servers ran on the host. The client ran inside a

virtual machine, using VMware Workstation 5.0 as the virtual machine monitor [97]. The

client’s VM was configured with 64 MB RAM, one virtual Ethernet card, and one 4 GB

sparsely allocated virtual disk. Both guest and host ran Debian GNU/Linux “unstable” with

a Linux 2.6.12 kernel. The guests and hosts used the ext3 file system on their disks. The

guest’s disk was configured with an IDE interface. We disabled non-essential services on

the guest and host to minimize variation between runs.

We configured the conventional NFS servers to serve a single, initially empty, directory

to the client. Similarly, we configured Ventana with a view of an initially empty private

branch. In all cases, communication between the client and server was over “localhost,”

eliminating the delays of real networks as a variable.

We ran the file system tests already described in Section 6.1.3, plus the following test:

Boot Time to boot using the tested storage system, from the boot loader prompt to the

Linux login prompt. For the NFS servers, this means configuring Linux to boot from

an “NFS root” file system. This tests read performance.
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6.2.1 Results

Table 6.3 reports our performance results, obtained by running each test multiple times and

reporting the mean. The Boot test was timed manually by watching a clock. Times for

other tests were measured in the guest OS using the bash shell’s time command.

The results are largely as expected: in general, virtual disks are fastest, followed by

Linux NFS, unfs3, and Ventana, in that order. However, in the Create test, Ventana is

significantly faster than the Linux NFS server. We discovered that this is because Linux

synchronously creates files, which is not explicitly required by NFSv3. In the Extract test,

unfs3 and Ventana are slightly faster than Linux NFS for the same reason.

The unfs3 server was unable to complete the Create test. In multiple attempts, it

reported many “stale file handle” errors and eventually hung.

6.2.2 Analysis

As we tuned the NFS servers during testing, we found that two factors dominate NFSv3

performance: primarily, the speed of COMMIT, and secondarily, read and write block size.

COMMIT is a NFSv3 RPC that synchronously forces a file’s inode and contents to disk.

An NFSv3 server must not reply to a COMMIT call until the file’s inode and contents are

on disk. Thus, COMMIT is analogous to fsync in a POSIX system. A typical NFS client,

such as the Linux 2.6.12 kernel client, writes files with a series of asynchronous WRITE

requests, followed by a single COMMIT request when the process that wrote the file closes

it. The COMMIT request sent on close can easily cause NFSv3 performance to bottleneck

on COMMIT performance.

We observed this in practice. An early version of Ventana disregarded COMMIT re-

quests, replying immediately. This version completed the Build test in 216 seconds (about

10% faster), making it the fastest of the NFS servers. Our next attempt checkpointed all

modified files and the version log to disk on a COMMIT call. This version took over 360

seconds to complete the Build test. Finally, we implemented a selective COMMIT that

only forces the specified file to disk, which completed the Build test in 239 seconds, the

figure reported in Table 6.3.

We found block size, that is, the maximum number of bytes that may be read or written
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in a single READ or WRITE call, to be a secondary factor in NFS performance. The times

reported in Table 6.3 were all produced using a 32 kB block size. (By default, unfs3 limits

block size to 8 kB, but we overrode this value by modifying its source code.) Reducing

block size to 8 kB increased the time for the Build test by about 6% for Ventana, but 1% or

less for the other NFSv3 servers. The current implementation of Ventana has high per-call

overheads because it does not cache file descriptors from call to call, so we speculate that

this is the reason for the penalty.

The penalty for smaller block sizes is not due to synchronous writes. NFSv3 clients do

not typically request synchronous writes. Instead, they make asynchronous WRITE calls

followed by a synchronous COMMIT, as already described.

6.2.3 Potential for Optimization

Two kinds of optimization are possible. The first is speeding up Ventana’s NFSv3 server.

Currently Ventana stores each file version as two files in the host file system: one for the

inode, one for contents. A COMMIT call must fsync both. Using a log to store file and

inode changes could reduce the fsync calls to just one. A log file would likely be stored

contiguously on disk, unlike the many files that require fsync in the current approach.

These factors together would likely speed up COMMIT significantly. Ventana could also

cache file descriptors from one call to the next.

But even an excellent implementation of an NFSv3 server is unlikely to exceed the

speed of the Linux in-kernel server, given existing NFSv3 clients. For Ventana perfor-

mance to approach the speed of a virtual disk, we believe that protocol changes, and thus

modification of clients, will be necessary. Support for NFSv3 could be retained for com-

patibility with guests that don’t have special support for Ventana.

Thus, a more advanced implementation would, for performance, want to implement a

custom protocol, such as POFS, or at least an extended version of NFS, for communication

between the guest OS and Ventana’s host manager. This is our second kind of optimiza-

tion. Because both the guest and the host manager run on the same physical machine,

they can make assumptions that conventional network file system clients and server can-

not. For example, the client and server both have the same endianness, so there is no need
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for them to convert to and from network byte order. Perhaps most importantly, the guest

OS and the host manager can use shared memory to transmit file blocks, instead of using

network protocols that require copying. This approach could yield performance approach-

ing that possible with virtual disks, as shown by POFS and other inter-virtual machine file

systems [71].



Chapter 7

Related and Future Work

This chapter discusses related and future work, organized by category. Work related to

extreme paravirtualization is broken into sections that cover designs used for modular op-

erating systems, virtual machine monitors, network stacks, and distributed file systems.

Virtualization aware file systems are treated separately. A final section covers ideas for

future work.

7.1 Modular Operating Systems

The result of applying the extreme paravirtualization approach to both the network and

block storage of an modern operating system is shown in Figure 7.1. This structure closely

resembles that of the research microkernel operating systems of the 1980s. In fact, many of

the benefits we claim in this thesis, such as improved OS modularity and the ability to easily

substitute alternative implementation for kernel components, were among the selling points

for microkernels. We claim that the extreme paravirtualization approach has the ability to

achieve these benefits in an evolutionary way that leverages existing industry trends and

bypasses the problems that impeded widespread adoption of microkernels.

Dominant modern operating system environments such as Microsoft Windows, Linux,

and Mac OS X resemble the monolithic kernel structure more than they do microkernels,

so it is clear that in spite of its benefits, the microkernel approach suffered from some

problem that caused it to fail to influence the industry away from the monolithic kernel

79



CHAPTER 7. RELATED AND FUTURE WORK 80

approach. Performance concerns are commonly mentioned as a cause of this failure, but it

fundamentally boiled down to the inability to convince OS kernel designers and maintainers

to adopt the approach.

Unlike 1980s microkernels, where claims of a better OS structure competed against

performance problems and inertia against change, the virtualization layer is already being

deployed by the industry for its reduction in management cost and better resource utiliza-

tion. Even monolithic OS vendors have embraced virtualization, with Microsoft touting its

Viridian hypervisor [62] and the multiple virtualization approaches being promoted in the

Linux community [48, 98]. Our approach can assume the existence of the hypervisor as a

starting point and evolve the decomposed architecture from there.

Rather than having to convince OS kernel designers to adopt our approach, paravirtu-

alization at existing OS interfaces allows our approach to proceed without help from the

kernel designers. Our experience with the Linux kernel shows how our approach can be

done with no changes to the existing operating system kernel and using inter-VM services

common to modern hypervisors.

We believe that the ability to form this decomposition in a piecemeal way will mitigate

any performance concerns. Furthermore, workloads in virtual machines that suffer from

the overheads can always choose to not use the extreme paravirtualized interfaces, leaving

only the applications that find enough benefit from them to use it. This improves on the

all-or-nothing approach offered by microkernels.

7.2 Virtual Machine Environments

Parallels Desktop 3.0 and VMware Workstation 5.0 virtualize 3-D graphics in an extreme

paravirtualization-like manner [99, 100]. Instead of providing an interface that resem-

bles hardware 3-D interfaces, these products provide an implementation of common 3-D

APIs (DirectX and OpenGL) that is then passed through to the host’s implementation of

these APIs. This approach is likely motivated by the undocumented, rapidly changing, and

difficult-to-translate nature of real 3-D hardware interface, which differs considerably from

our motivations.

LeVasseur et al. [101] showed how drivers for physical devices can be moved into
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separate VMs. It provides a way to improve the reliability of a VMM by moving its physical

device drivers into separate modules, whereas our work aims to improve the modularity

(and hence reliability) of the operating systems inside VMs.

Several VMMs have implemented inter-VM memory sharing. IBM’s z/VM has Dis-

contiguous Shared Segment (DCSS) support, a feature dating back at least as far as CP-67,

which allows a read-only, shared segment of storage to be loaded at the same address in

multiple VMs, to reduce host memory requirements when multiple VMs have common

code or data [102]. VMware ESX Server dynamically detects identical memory pages

across VMs and merges their contents, with copy-on-write if one copy is changed [103].

The Xen VMM also has inter-VM communication primitives, as discussed in Section 6,

that have been used to implement fast inter-VM RPC [104, 71]. Related mechanisms were

supported in CP-67 since at least 1979 [65].

Adding secure message passing and memory sharing to VMMs has been proposed as

a way of reducing the total size of the trusted computing base of a system, by making it

possible to use untrusted components as part of a trusted system [105, 106]. As a simple,

fast, secure protocol, PON may be an appropriate basis for such a communication system.

Warfield’s Ph.D. thesis [107] also addresses the implementation of virtual devices in

a virtual machine environment. Warfield’s approach does not raise the virtual interface’s

level of abstraction.

Linux-VServer [108] uses an OS-level virtualization approach to allow one Linux ker-

nel to act as multiple virtual servers. It is superficially similar to our prototypes, which also

divide a system into multiple Linux kernels. However, Linux-VServer does not pull any

functionality out of the main kernel into virtual servers. Also, OS-level virtualization pro-

vides fundamentally less isolation between VMs than does a traditional VMM. Finally, our

prototype is only Linux-based for convenience; a production version of PON, for example,

would likely be based on a simpler system, for security.

The Proper system designed for PlanetLab [109] provides a means for VMs in a system

virtualized at the system call level under Linux-VServer to request privileged operations

from another VM. It is a much higher-level system than the one we propose here, because it

can take advantage of features of the OS shared among VMs; e.g. Proper uses file descriptor

passing among processes as an important building block.
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Plan 9 [110] is based on a protocol, called 9p, that can be used for general-purpose

access to and manipulation of local and remote resources [111]. 9p could be used as the

basis of PON, POFS, and other kinds of extreme paravirtualization. However, as a network

protocol, 9p cannot take advantage of shared memory as can protocols designed for it, such

as PON and POFS.

µDenali [112], by Whitaker et al., is a paravirtualizing VMM built on the concept of

allowing a parent VM to provide services to child VMs by interposing on the child VM’s

virtual device interactions. It is not clear whether this interposition mechanism generalizes

to higher-level interfaces; the services described in the µDenali paper operate at the same

level of abstraction as ordinary hardware.

Self-virtualizing devices, that is, devices with multiple hardware contexts that can be

assigned to and used directly by VMs, have been proposed to increase network scala-

bility [113], an idea closely related to user-accessible network interfaces [61, 114, 115].

An extreme paravirtualization device module could use the increased performance of self-

virtualizing devices or, possibly, user-accessible network devices, in the same way as a

conventional VM device architecture.

The Collective manages VMs whose data is cached on portable storage devices carried

by users [116]. Data for VMs in the Collective is maintained in the form of virtual disks.

Use of a VAFS could allow the Collective to more effectively choose data for caching and

backup, because of the additional structure imposed by a hierarchical file system compared

to a virtual disk. The GVFS and Internet Suspend/Resume projects that migrate virtual

machines across a network could similarly benefit [117, 118].

7.3 Network Paravirtualization

Much research has explored the different ways that a network stack can be divided among

hardware and software components. Multiple researchers have explored dedicating one or

more processors, processor cores, hardware threads, or cluster nodes to network process-

ing [119, 120, 121, 122]. Like PON, many of these systems use a shared memory interface

to the network stack. These systems focus on performance, however, and their network

stacks are not isolated from the rest of the operating system.
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User-level networking moves most network processing from the kernel into user appli-

cations. This can speed up networking by reducing context switches [123, 69, 114] or by

allowing network implementations to be specialized to application needs [92, 124, 125].

Each PON gateway VM is essentially a user-level network stack and could take advantage

of some of the same hardware features. User processes in VMs could also interface to a

PON link directly, bypassing the guest kernel. This would require modifying user applica-

tions, which our present work avoids.

The Mach microkernel demonstrates another way to move network processing to user

space, by moving an entire monolithic Unix kernel into user-space [51]. Mach also showed

that performance could be comparable to an in-kernel implementation [126].

In hardware, TCP offload engines (TOEs) seek to accelerate networking by implement-

ing a network stack in hardware [127, 128, 129, 130], analogous to how PON implements a

network stack in virtual hardware. However, because they are implemented as specialized

hardware, they cannot offer the same flexibility as PON. They often suffer from low re-

source limits, e.g. Adaptec TOEs are limited to 1,024 simultaneous TCP connections [127].

Unlike PON, TOEs can be difficult to upgrade or not upgradable, and difficult to adapt to

new protocols. Furthermore, the PON protocol is simple, but a TOE often has a complex

interface, e.g. Microsoft TCP Chimney [131], with associated overhead that can be high

enough to negate the TOE’s advantages [132, 133].

The PON approach of using a socket-level proxy (the PON gateway) to access an exter-

nal network has been applied to wireless links of varying speed. In a wireless environment,

the lossy quality of the link adversely affects performance, because TCP interprets loss as

congestion. Using a wired proxy avoids the issue [134, 135].

Fast Sockets [136], like PON, transparently replaces TCP/IP with another protocol

within a given domain, in its case among hosts on a Myrinet network. Unlike PON, the

primary goal of Fast Sockets is to reduce latency and increase bandwidth. Fast Sockets

requires hardware support for Active Messages.

Project Crossbow [137] under OpenSolaris uses a hardware packet classification engine

to dynamically manage priority and bandwidth assigned to a set of VMs. Its designers call

this “network virtualization,” but it is unrelated to network paravirtualization in PON.

The Tahoma web browsing system by Cox et al. [138] uses network proxy and a virtual



CHAPTER 7. RELATED AND FUTURE WORK 84

machine architecture to improve safety of access to web pages. This approach obtains

many of the security advantages of PON for the specific purpose of browsing the web.

Xen, VMware, and other systems support simplified virtual Ethernet devices based on

shared memory ring buffers [48, 45]. PON also uses shared memory ring buffers for virtual

networking, but each of its ring buffers represents user payload data in a TCP or UDP

socket, instead of a frame in a virtual Ethernet device.

7.4 File System Paravirtualization

XenFS [139] is a file system that, like POFS, shares caches between virtual machines.

Unlike POFS, it is targeted specifically at Linux guests under Xen and shares Linux-specific

data structures between VMs.

VNFS [71] aims to improve performance of distributed file systems where server and

client run on the same host. POFS adopts both of these optimizations, as described in

Section 4.3.1.

Parallax [74] demonstrates that virtual disks can be stored centrally with very high

scalability. Parallax allows virtual disks to be efficiently used and modified in a copy-on-

write fashion by many users. Unlike POFS, it does not allow cooperative sharing among

users, nor does it enhance the transparency or improve the granularity of virtual disks.

Xen uses shared memory between VMs for access to storage [48], as does POFS. Xen,

however, uses this primitive to provide access to blocks in a virtual block device, whereas

POFS provides higher-level access to file data and metadata.

NFS over a remote direct memory access (RDMA) transport is reported to both increase

transfer rates and reduce CPU utilization, at least for large protocol block sizes [140].

Virtual RDMA hardware in a virtual machine monitor could be used as a transport for

POFS. However, RDMA is not a shared memory protocol, so such an implementation

would sacrifice the cache coherency and memory savings advantages of POFS.
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7.5 Virtualization Aware File Systems

VMware ESX Server includes the VMFS file system, which is designed for storing large

files such as virtual disks [87]. VMFS allows for snapshots and copy-on-write sharing, but

not the other features of a virtualization aware file system.

Live migration of virtual machines [141] requires the VM’s storage to be available

on the network. Ventana, as a distributed file system particularly suited to VM storage,

provides a reasonable approach.

Whitaker et al. [142, 72] used whole-system versioning to mechanically discover the

origin of a problem by doing binary search through the history of a system. They note the

“semantic gap” in trying to relate changes to a virtual disk with higher-level actions. We

believe that a VAFS, in which changes to files and directories may be observed directly,

could help to reduce this semantic gap.

The Ventana prototype of course has much in common with other file systems. Object

stores are an increasingly common way to structure file systems [83, 84, 143]. Objects

in Ventana are immutable, which is unusual among object stores, although in this respect

Ventana resembles the Cedar file system and, more recently, EMC’s Centera system [144,

145]. PVFS2, a network file system for high-bandwidth parallel file I/O, is another file

system that uses Berkeley DB databases to store file system metadata [146].

Many versioning file systems exist, in research systems such as Cedar, Elephant, and

S4, and in production systems such as WAFL (used by Network Appliance filers) and

VMS [144, 75, 79, 147, 148]. A versioning file system on top of a virtual disk allows old

versions to be easily accessed inside the VM, but does not address the other downsides

of virtual disks. None of these systems supports the tree-structured versions necessary to

properly handle the natural evolution of virtual machines. The version retention policies

introduced in Elephant might be usefully applied to Ventana.

Online file archives, such as Venti, also support accessing old versions of files, but again

only linear versioning is supported [149].

Ventana’s tree-structured version model is related to the model used in revision control

systems, such as CVS [150]. A version created by merging versions from different branches

has more than one parent, so versions in revision control systems are actually structured as
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directed acyclic graphs. Revision control systems would generally not be good “back end”

storage for Ventana or another VAFS because they typically store only a single “latest”

version of a file for efficient retrieval. Retrieving other versions, including the latest version

of files in branches other than the “main branch,” requires application of patches [151].

Files marked “binary,” however, often include each revision in full, without using patches,

so use of “binary” files might be an acceptable choice.

Vesta [76] is a software configuration management system whose primary file access

interface is over NFS, like Ventana. Dependency tracking in Vesta allows for precise,

high-performance, repeatable builds. Similar tracking by a VAFS might enable better un-

derstanding of which files and versions should be retained over the long term.

We proposed extending a distributed file system, which already supports fine-grained

sharing, by adding versioning that supports virtual machines. An alternative approach is

to allow virtual disks, which already support VM-style versioning, to support sharing by

adding a locking layer, as can be done for physical disks [152, 153]. This approach re-

quires committing to a particular on-disk format, which makes changes and extensions

more difficult. It also either requires each client to understand the disk format, which is

a compatibility issue, or use of a network proxy that does understand the format. In the

latter case the proxy is equivalent to Ventana’s host manager, and the storage underlying it

is really an implementation detail of the proxy.

A “union” or “overlay” file system [110, 154] can stack a writable file system above

layers of read-only file systems. If the top layer is the current branch and lower layers are

the branches that it was forked from, something like tree versioning can be obtained. The

effect is imperfect because changes to lower layers can “show through” to the top. Sym-

bolic link farms can also stack layers of directories, often for multi-architecture software

builds [155], but link farms are not transparent to the user or software.

Application virtualization and streaming software such as SoftGrid [156] (formerly

known as Softricity) offers some of the advantages of a VAFS outlined in Section 5.5,

such as the ability for system administrators to install, upgrade, and patch applications on

demand. Application virtualization software also offers OS-specific features not imple-

mented in Ventana, such as the ability to virtualize the Windows registry. But application

virtualization software does not allow for user customization of software, it does not enable
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cooperative sharing of files among users, it does not have the flexible versioning model of

a VAFS, and it does not give system administrators insight into how users are using their

machines, only control over their applications.

7.6 Future Work

This thesis has demonstrated the practicality of extreme paravirtualization for two specific

subsystems: networks and file systems. An obvious category of future work would be to

extend extreme paravirtualization to include other domains as well. Video and sound are

relatively simple candidates. More ambitious would be to attempt to move more tightly

integrated kernel subsystems, such as the scheduler, into separate VMs. It is not clear that

this could be done without major operating system changes.

Once major components of a kernel, such as networking and file systems, are avail-

able as separate modules, it becomes easier than currently possible to build a minimal

application-specific operating system. Construction of minimal operating systems, for such

purposes as reducing the trusted code base of a system of VMs (see Section 3.4), is addi-

tional future work.

Our prototype extreme paravirtualization modules were layered on top of the VMM’s

conventional virtual devices. Additional performance could be possible by giving the vir-

tual device implementations direct access to the corresponding hardware.
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Figure 7.1: System software structure for extreme paravirtualization.
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Conclusion

Paravirtualizing VMMs provide virtual devices that are usually streamlined, simplified, or

subsetted versions of equivalent physical hardware interfaces. This thesis investigated a

more rarely seen form of paravirtual device, where the virtual interface operates at a higher

level of abstraction than the common hardware interface.

We have shown the practicality of using this higher-level (“extreme”) paravirtualization

to better secure systems or networks, to shrink the trusted code base of an operating system,

and to increase the modularity of an operating system. We demonstrated prototypes of ex-

treme paravirtualized network and file system devices that run in VMs independent of their

client VMs. We also showed that extreme paravirtualization has only a minor performance

cost, even in our relatively unoptimized prototype, and that our approach offers a way to

take advantage of multi-core and multi-threaded CPUs.

We further argue that extreme paravirtualization allows us to pull functionality out of

modern operating system into separate, isolated environments, to form an easy path to a

desirable, decomposed microkernel-like OS structure. We showed that this can be done

in an evolutionary way leveraging the current industrial trends towards virtualization and

multi-core CPUs, and without relying on changes in either the OS kernel or virtual machine

monitor.

We further extended this extreme paravirtualization approach for virtual storage. Whereas

a extreme paravirtualization interface to storage aids sharing of data on virtual disks, it does

not help with the other shortcomings of virtual disks. Therefore, we proposed the concept

89
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of a virtualization aware file system that combines the features of a virtual disk with those

of a distributed file system. A VAFS extends a conventional distributed file system with

versioning, access control, and disconnected operation features resembling those available

from virtual disks. This gains the benefits of virtual disks, without compromising usability,

security, or ease of management.
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