These functions act on each element of their argument independently, like the elementwise operators (see Elementwise Binary Operators).
Takes the absolute value of each element of M.
ABS({-1, 2; -3, 0}) ⇒ {1, 2; 3, 0}
Computes the inverse sine or tangent, respectively, of each element in M. The results are in radians, between -\pi/2 and +\pi/2, inclusive.
The value of \pi can be computed as 4*ARTAN(1)
.
ARSIN({-1, 0, 1}) ⇒ {-1.57, 0, 1.57}
(approximately)
ARTAN({-5, -1, 1, 5}) ⇒ {-1.37, -.79, .79, 1.37}
(approximately)
Computes the cosine or sine, respectively, of each element in M, which must be in radians.
COS({0.785, 1.57; 3.14, 1.57 + 3.14}) ⇒ {.71, 0; -1, 0}
(approximately)
Computes e^x for each element x in M.
EXP({2, 3; 4, 5}) ⇒ {7.39, 20.09; 54.6, 148.4}
(approximately)
Takes the logarithm with base 10 or base e, respectively, of each element in M.
LG10({1, 10, 100, 1000}) ⇒ {0, 1, 2, 3}
LG10(0) ⇒
(error)
LN({EXP(1), 1, 2, 3, 4}) ⇒ {1, 0, .69, 1.1, 1.39}
(approximately)
LN(0) ⇒
(error)
Takes each element in M modulo nonzero scalar value s, that is, the remainder of division by s. The sign of the result is the same as the sign of the dividend.
MOD({5, 4, 3, 2, 1, 0}, 3) ⇒ {2, 1, 0, 2, 1, 0}
MOD({5, 4, 3, 2, 1, 0}, -3) ⇒ {2, 1, 0, 2, 1, 0}
MOD({-5, -4, -3, -2, -1, 0}, 3) ⇒ {-2, -1, 0, -2, -1, 0}
MOD({-5, -4, -3, -2, -1, 0}, -3) ⇒ {-2, -1, 0, -2, -1, 0}
MOD({5, 4, 3, 2, 1, 0}, 1.5) ⇒ {.5, 1.0, .0, .5, 1.0, .0}
MOD({5, 4, 3, 2, 1, 0}, 0) ⇒
(error)
Rounds each element of M to an integer. RND
rounds to
the nearest integer, with halves rounded to even integers, and
TRUNC
rounds toward zero.
RND({-1.6, -1.5, -1.4}) ⇒ {-2, -2, -1}
RND({-.6, -.5, -.4}) ⇒ {-1, 0, 0}
RND({.4, .5, .6} ⇒ {0, 0, 1}
RND({1.4, 1.5, 1.6}) ⇒ {1, 2, 2}
TRUNC({-1.6, -1.5, -1.4}) ⇒ {-1, -1, -1}
TRUNC({-.6, -.5, -.4}) ⇒ {0, 0, 0}
TRUNC({.4, .5, .6} ⇒ {0, 0, 0}
TRUNC({1.4, 1.5, 1.6}) ⇒ {1, 1, 1}
Takes the square root of each element of M, which must not be negative.
SQRT({0, 1, 2, 4, 9, 81}) ⇒ {0, 1, 1.41, 2, 3, 9}
(approximately)
SQRT(-1) ⇒
(error)