The following continuous distributions are available:
(x)
¶(x, a, b)
¶(p, a, b)
¶(a, b)
¶(x, a, b, lambda)
¶(x, a, b, lambda)
¶Beta distribution with shape parameters a and b. The noncentral distribution takes an additional parameter lambda. Constraints: a > 0, b > 0, lambda >= 0, 0 <= x <= 1, 0 <= p <= 1.
(x0, x1, rho)
¶(x0, x1, rho)
¶Bivariate normal distribution of two standard normal variables with correlation coefficient rho. Two variates x0 and x1 must be provided. Constraints: 0 <= rho <= 1, 0 <= p <= 1.
(x, a, b)
¶(x, a, b)
¶(p, a, b)
¶(a, b)
¶Cauchy distribution with location parameter a and scale parameter b. Constraints: b > 0, 0 < p < 1.
(x, df)
¶(x, df)
¶(p, df)
¶(df)
¶(x, df, lambda)
¶Chi-squared distribution with df degrees of freedom. The noncentral distribution takes an additional parameter lambda. Constraints: df > 0, lambda > 0, x >= 0, 0 <= p < 1.
(x, a)
¶(x, a)
¶(p, a)
¶(a)
¶Exponential distribution with scale parameter a. The inverse of a represents the rate of decay. Constraints: a > 0, x >= 0, 0 <= p < 1.
(x, a, b)
¶(a, b)
¶Exponential power distribution with positive scale parameter a and nonnegative power parameter b. Constraints: a > 0, b >= 0, x >= 0, 0 <= p <= 1. This distribution is a PSPP extension.
(x, df1, df2)
¶(x, df1, df2)
¶(x, df1, df2)
¶(p, df1, df2)
¶(df1, df2)
¶F-distribution of two chi-squared deviates with df1 and df2 degrees of freedom. The noncentral distribution takes an additional parameter lambda. Constraints: df1 > 0, df2 > 0, lambda >= 0, x >= 0, 0 <= p < 1.
(x, a, b)
¶(x, a, b)
¶(p, a, b)
¶(a, b)
¶Gamma distribution with shape parameter a and scale parameter b. Constraints: a > 0, b > 0, x >= 0, 0 <= p < 1.
(x, a, b)
¶(x, a, b)
¶(p, a, b)
¶(a, b)
¶Laplace distribution with location parameter a and scale parameter b. Constraints: b > 0, 0 < p < 1.
(c, alpha)
¶Levy symmetric alpha-stable distribution with scale c and exponent alpha. Constraints: 0 < alpha <= 2.
(c, alpha, beta)
¶Levy skew alpha-stable distribution with scale c, exponent alpha, and skewness parameter beta. Constraints: 0 < alpha <= 2, -1 <= beta <= 1.
(x, a, b)
¶(x, a, b)
¶(p, a, b)
¶(a, b)
¶Logistic distribution with location parameter a and scale parameter b. Constraints: b > 0, 0 < p < 1.
(x, a, b)
¶(x, a, b)
¶(p, a, b)
¶(a, b)
¶Lognormal distribution with parameters a and b. Constraints: a > 0, b > 0, x >= 0, 0 <= p < 1.
(x, mu, sigma)
¶(x, mu, sigma)
¶(p, mu, sigma)
¶(mu, sigma)
¶Normal distribution with mean mu and standard deviation sigma. Constraints: b > 0, 0 < p < 1. Three additional functions are available as shorthand:
(x)
¶Equivalent to CDF.NORMAL(x, 0, 1).
(p)
¶Equivalent to IDF.NORMAL(p, 0, 1).
(sigma)
¶Equivalent to RV.NORMAL(0, sigma).
(x, a, sigma)
¶(a, sigma)
¶Normal tail distribution with lower limit a and standard deviation sigma. This distribution is a PSPP extension. Constraints: a > 0, x > a, 0 < p < 1.
(x, a, b)
¶(x, a, b)
¶(p, a, b)
¶(a, b)
¶Pareto distribution with threshold parameter a and shape parameter b. Constraints: a > 0, b > 0, x >= a, 0 <= p < 1.
(x, sigma)
¶(x, sigma)
¶(p, sigma)
¶(sigma)
¶Rayleigh distribution with scale parameter sigma. This distribution is a PSPP extension. Constraints: sigma > 0, x > 0.
(x, a, sigma)
¶(a, sigma)
¶Rayleigh tail distribution with lower limit a and scale parameter sigma. This distribution is a PSPP extension. Constraints: a > 0, sigma > 0, x > a.
(x, df)
¶(x, df)
¶(p, df)
¶(df)
¶T-distribution with df degrees of freedom. The noncentral distribution takes an additional parameter lambda. Constraints: df > 0, 0 < p < 1.
(x, a, b)
¶(x, a, b)
¶(p, a, b)
¶Type-1 Gumbel distribution with parameters a and b. This distribution is a PSPP extension. Constraints: 0 < p < 1.
(x, a, b)
¶(x, a, b)
¶(p, a, b)
¶Type-2 Gumbel distribution with parameters a and b. This distribution is a PSPP extension. Constraints: x > 0, 0 < p < 1.
(x, a, b)
¶(x, a, b)
¶(p, a, b)
¶(a, b)
¶Uniform distribution with parameters a and b. Constraints: a <= x <= b, 0 <= p <= 1. An additional function is available as shorthand:
(b)
¶Equivalent to RV.UNIFORM(0, b).