
ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

NAME
ovs−actions − OpenFlow actions and instructions with Open vSwitch extensions

INTRODUCTION
This document aims to comprehensively document all of the OpenFlow actions and instructions, both stan-
dard and non-standard, supported by Open vSwitch, regardless of origin. The document includes informa-
tion of interest to Open vSwitch users, such as the semantics of each supported action and the syntax used
by Open vSwitch tools, and to developers seeking to build controllers and switches compatible with Open
vSwitch, such as the wire format for each supported message.

Actions
In this document, we define anaction as an OpenFlow action, which is a kind of command that specifies
what to do with a packet. Actions are used in OpenFlow flows to describe what to do when the flow
matches a packet, and in a few other places in OpenFlow. Each version of the OpenFlow specification
defines standard actions, and beyond that many OpenFlow switches, including Open vSwitch, implement
extensions to the standard.

OpenFlow groups actions in two ways: as anaction listor anaction set, described below.

Action Lists

An action list, a concept present in every version of OpenFlow, is simply an ordered sequence of actions.
The OpenFlow specifications require a switch to execute actions within an action list in the order specified,
and to refuse to execute an action list entirely if it cannot implement the actions in that order [OpenFlow
1.0, section 3.3], with one exception: when an action list outputs multiple packets, the switch may output
the packets in an order different from that specified. Usually, this exception is not important, especially in
the common case when the packets are output to different ports.

Action Sets

OpenFlow 1.1 introduced the concept of anaction set. An action set is also a sequence of actions, but the
switch reorders the actions and drops duplicates according to rules specified in the OpenFlow specifica-
tions. Because of these semantics, some standard OpenFlow actions cannot usefully be included in an
action set. For some, but not all, Open vSwitch extension actions, Open vSwitch defines its own action set
semantics and ordering.

The OpenFlow pipeline has an action set associated with it as a packet is processed. After pipeline process-
ing is otherwise complete, the switch executes the actions in the action set.

Open vSwitch applies actions in an action set in the following order: Except as noted otherwise below, the
action set only executes at most a single action of each type, and when more than one action of a given type
is present, the one added to the set later replaces the earlier action:

1. strip_vlan

2. pop_mpls

3. decap

4. encap

5. push_mpls

6. push_vlan

7. dec_ttl

8. dec_mpls_ttl

9. dec_nsh_ttl

10. All of the following actions are executed in the order added to the action set, with cumula-
tive effect. That is, when multiple actions modify the same part of a field, the later modifi-
cation takes effect, and when they modify different parts of a field (or different fields), then
both modifications are applied:

Open vSwitch 2.10.90 1

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

• load

• move

• mod_dl_dst

• mod_dl_src

• mod_nw_dst

• mod_nw_src

• mod_nw_tos

• mod_nw_ecn

• mod_nw_ttl

• mod_tp_dst

• mod_tp_src

• mod_vlan_pcp

• mod_vlan_vid

• set_field

• set_tunnel

• set_tunnel64

11. set_queue

12. group, output, resubmit, ct_clear, or ct. If more than one of these actions is present, then
the one listed earliest above is executed and the others are ignored, regardless of the order
in which they were added to the action set. (If none of these actions is present, the action
set has no real effect, because the modified packet is not sent anywhere and thus the modifi-
cations are not visible.)

An action set may only contain the actions listed above.

Error Handling
Packet processing can encounter a variety of errors:

Bridge not found
Open vSwitch supports an extension to the standard OpenFlow controller action called a
‘‘ continuation,’’ w hich allows the controller to interrupt and later resume the processing
of a packet through the switch pipeline. This error occurs when such a packet’s process-
ing cannot be resumed, e.g. because the bridge processing it has been destroyed. Open
vSwitch reports this error to the controller as Open vSwitch extension error
NXR_STALE .

This error prevents packet processing entirely.

Recursion too deep
While processing a given packet, Open vSwitch limits the flow table recursion depth to
64, to ensure that packet processing uses a finite amount of time and space. Actions that
count against the recursion limit includeresubmit from a given OpenFlow table to the
same or an earlier table,group, andoutput to patch ports.

A resubmit from one table to a later one (or, equivalently. agoto_tableinstruction) does
not count against the depth limit because resubmits to strictly monotonically increasing
tables will eventually terminate. OpenFlow tables are most commonly traversed in
numerically increasing order, so this limit has little effect on conventionally designed
OpenFlow pipelines.

This error terminates packet processing. Any previous side effects (e.g. output actions)
are retained.

Open vSwitch 2.10.90 2

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

Usually this error indicates a loop or other bug in the OpenFlow flow tables. To assist
debugging, when this error occurs, Open vSwitch 2.10 and later logs a trace of the packet
execution, as if byovs−appctl ofproto/trace, rate-limited to one per minute to reduce the
log volume.

Too many resubmits
Open vSwitch limits the total number ofresubmit actions that a given packet can execute
to 4,096. For this purpose,goto_tableinstructions and output to thetable port are treated
like resubmit. This limits the amount of time to process a single packet.

Unlike the limit on recursion depth, the limit on resubmits counts all resubmits, regard-
less of direction.

This error has the same effect, including logging, as exceeding the recursion depth limit.

Stack too deep
Open vSwitch limits the amount of data that thepush action can put onto the stack at one
time to 64 kB of data.

This error terminates packet processing. Any previous side effects (e.g. output actions)
are retained.

No recirculation context
Recirculation conflict

These errors indicate internal errors inside Open vSwitch and should generally not occur.
If you notice recurring log messages about these errors, please report a bug.

Too many MPLS labels
Open vSwitch can process packets with any number of MPLS labels, but its ability to
push and pop MPLS labels is limited, currently to 3 labels. Attempting to push more than
the supported number of labels onto a packet, or to pop any number of labels from a
packet with more than the supported number, raises this error.

This error terminates packet processing, retaining any previous side effects (e.g. output
actions). When this error arises within the execution of a group bucket, it only terminates
that bucket’s execution, not packet processing overall.

Invalid tunnel metadata
Open vSwitch raises this error when it processes a Geneve packet that has TLV options
with an invalid form, e.g. where the length in a TLV would extend past the end of the
options.

This error prevents packet processing entirely.

Unsupported packet type
When aencapaction encapsulates a packet, Open vSwitch raises this error if it does not
support the combination of the new encapsulation with the current packet. encap(ether-
net) raises this error if the current packet is not an L3 packet, andencap(nsh)raises this
error if the current packet is not Ethernet, IPv4, IPv6, or NSH.

When adecapaction decapsulates a packet, Open vSwitch raises this error if it does not
support the type of inner packet. decapof an Ethernet header raises this error if a VLAN
header is present,decapof a NSH packet raises this error if the NSH inner packet is not
Ethernet, IPv4, IPv6, or NSH, anddecap of other types of packets is unsupported and
also raises this error.

This error terminates packet processing, retaining any previous side effects (e.g. output
actions). When this error arises within the execution of a group bucket, it only terminates
that bucket’s execution, not packet processing overall.

Inconsistencies
OpenFlow 1.0 allows any action to be part of any flow, reg ardless of the flow’s match. Some combinations
do not make sense, e.g. anset_nw_tosaction in a flow that matches only ARP packets orstrip_vlan in a

Open vSwitch 2.10.90 3

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

flow that matches packets without VLAN tags. Other combinations have varying results depending on the
kind of packet that the flow processes, e.g. aset_nw_srcaction in a flow that does not match on Ethertype
will be treated as a no-op when it processes a non-IPv4 packet. Nevertheless OVS allows all of the above in
conformance with OpenFlow 1.0, that is, the following will succeed:

$ ovs−ofctl −O OpenFlow10 add−flow br0 arp,actions=mod_nw_tos:12
$ ovs−ofctl −O OpenFlow10 add−flow br0 dl_vlan=0xffff,actions=strip_vlan
$ ovs−ofctl −O OpenFlow10 add−flow br0 actions=mod_nw_src:1.2.3.4

Open vSwitch calls these kinds of combinationsinconsistenciesbetween match and actions. OpenFlow 1.1
and later forbid inconsistencies, and disallow the examples described above by preventing such flows from
being added. All of the above, for example, will fail with an error message if one replacesOpenFlow10by
OpenFlow11.

OpenFlow 1.1 and later cannot detect and disallow all inconsistencies. For example, thewrite_actions
instruction arbitrarily delays execution of the actions inside it, which can even be canceled with
clear_actions, so that there is no way to ensure that its actions are consistent with the packet at the time
they execute. Thus, actions withwrite_actions and some other contexts are exempt from consistency
requirements.

When OVS executes an action inconsistent with the packet, it treats it as a no-op.

Inter−Version Compatibility
Open vSwitch supports multiple OpenFlow versions simultaneously on a single switch. When actions are
added with one OpenFlow version and then retrieved with another, Open vSwitch does its best to translate
between them.

Inter-version compatibility issues can still arise when different connections use different OpenFlow ver-
sions. Backward compatibility is the most obvious case. Suppose, for example, that an OpenFlow 1.1 ses-
sion adds a flow with a push_vlan action, for which there is no equivalent in OpenFlow 1.0. If an Open-
Flow 1.0 session retrieves this flow, Open vSwitch must somehow represent the action.

Forward compatibility can also be an issue, because later OpenFlow versions sometimes remove functional-
ity. The best example is theenqueueaction from OpenFlow 1.0, which OpenFlow 1.1 removed.

In practice, Open vSwitch uses a variety of strategies for inter-version compatibility:

• Most standard OpenFlow actions, such asoutput actions, translate without compatibility
issues.

• Open vSwitch supports its extension actions in every OpenFlow version, so they do not
pose inter-version compatibility problems.

• Open vSwitch sometimes adds extension actions to ensure backward or forward compati-
bility. For example, for backward compatibility with thegroup action added in Open-
Flow 1.1, Open vSwitch includes an OpenFlow 1.0 extensiongroup action.

Perfect inter-version compatibility is not possible, so best results require OpenFlow connections to use a
consistent version. One may enforce use of a particular version by setting theprotocols column for a
bridge, e.g. to forcebr0 to use only OpenFlow 1.3:

ovs−vsctl set bridge br0 protocols=OpenFlow13

Field Specifications
Many Open vSwitch actions refer to fields. In such cases, fields may usually be referred to by their common
names, such aseth_dst for the Ethernet destination field, or by their full OXM or NXM names, such as
NXM_OF_ETH_DST or OXM_OF_ETH_DST. Before Open vSwitch 2.7, only OXM or NXM field
names were accepted.

Many actions that act on fields can also act onsubfields, that is, parts of fields, written asfield[start..end],
wherestart is the first bit andend is the last bit to use infield, e.g. vlan_tci[13..15] for the VLAN PCP. A

Open vSwitch 2.10.90 4

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

single-bit subfield may also be written asfield[offset], e.g. vlan_tci[13] for the least-significant bit of the
VLAN PCP. Empty brackets may be used to explicitly designate an entire field, e.g.vlan_tci[] for the entire
16-bit VLAN TCI header. Before Open vSwitch 2.7, brackets were required in field specifications.

Seeovs−fields(7) for a list of fields and their names.

Port Specifications
Many Open vSwitch actions refer to OpenFlow ports. In such cases, the port may be specified as a numeric
port number in the range 0 to 65,535, although Open vSwitch only assigns port numbers in the range 1
through 62,279 to ports. OpenFlow 1.1 and later use 32-bit port numbers, but Open vSwitch never assigns a
port number that requires more than 16 bits.

In most contexts, the name of a port may also be used. (The most obvious context where a port name may
not be used is in anovs−ofctl command along with the−−no−namesoption.) When a port’s name contains
punctuation or could be ambiguous with other actions, the name may be enclosed in double quotes, with
JSON-like string escapes supported (see [RFC 8259]).

Open vSwitch also supports the following standard OpenFlow port names (even in contexts where port
names are not otherwise supported). The corresponding OpenFlow 1.0 and 1.1+ port numbers are listed
alongside them but should not be used in flow syntax:

• in_port (65528 or 0xfff8; 0xfffffff 8)

• table (65529 or 0xfff9; 0xfffffff 9)

• normal (65530 or 0xfff a; 0xfffffff a)

• flood (65531 or 0xfffb; 0xfffffff b)

• all (65532 or 0xfffc; 0xfffffff c)

• controller (65533 or 0xfffd; 0xfffffff d)

• local (65534 or 0xfffe; 0xfffffff e)

• any or none(65535 or 0xffff ; 0xffffffff)

• unset(not in OpenFlow 1.0; 0xfffffff 7)

Open vSwitch 2.10.90 5

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

OUTPUT ACTIONS
These actions send a packet to a physical port or a controller. A packet that never encounters an output
action on its trip through the Open vSwitch pipeline is effectively dropped. Because actions are executed in
order, a packet modification action that is not eventually followed by an output action will not have an
externally visible effect.

The output action
Syntax:

port
output:port
output:field
output(port= port, max_len=nbytes)

Outputs the packet to an OpenFlow port most commonly specified asport. Alternatively, the output port
may be read fromfield, a field or subfield in the syntax described under ‘‘Field Specifications’’ above.
Either way, if the port is the packet’s input port, the packet is not output.

The port may be one of the following standard OpenFlow ports:

local Outputs the packet on the ‘‘local port’’ that corresponds to the network device that has the
same name as the bridge, unless the packet was received on the local port. OpenFlow
switch implementations are not required to have a local port, but Open vSwitch bridges
always do.

in_port
Outputs the packet on the port on which it was received. This is the only standard way to
output the packet to the input port (but see ‘‘Output to the Input port’’, below).

The port may also be one of the following additional OpenFlow ports, unlessmax_len is specified:

normal
Subjects the packet to the device’s normal L2/L3 processing. This action is not imple-
mented by all OpenFlow switches, and each switch implements it differently.

flood Outputs the packet on all switch physical ports, except the port on which it was received
and any ports on which flooding is disabled. Flooding can be disabled automatically on a
port by Open vSwitch when IEEE 802.1D spanning tree (STP) or rapid spanning tree
(RSTP) is enabled, or by a controller using an OpenFlow OFPT_MOD_PORT request
to set the port’s OFPPC_NO_FLOOD flag (ovs−ofctl mod−port provides a command-
line interface to set this flag).

all Outputs the packet on all switch physical ports except the port on which it was received.

controller
Sends and its metadata the packet to an OpenFlow controller or controllers encapsulated
in an OpenFlow ‘‘packet-in’’ message. The separatecontroller action, described below,
provides more options for output to a controller.

Open vSwitch rejects output to other standard OpenFlow ports, includingnone, unset, and port numbers
reserved for future use as standard ports, with the errorOFPBAC_BAD_OUT_PORT.

With max_len, the packet is truncated to at mostnbytesbytes before being output. In this case, the output
port may not be a patch port. Truncation is just for the single output action, so that later actions in the
OpenFlow pipeline work with the complete packet. The truncation feature is meant for use in monitoring
applications, e.g. for mirroring packets to a collector.

When anoutput action specifies the number of a port that does not currently exist (and is not in the range
for standard ports), the OpenFlow specification allows but does not require OVS to reject the action. All
versions of Open vSwitch treat such an action as a no-op. If a port with the number is created later, then the
action will be honored at that point. (OpenFlow requires OVS to reject output to a port number that will
never be valid, with OFPBAC_BAD_OUT_PORT, but this situation does not arise when OVS is a soft-
ware switch, since the user can add or renumber ports at any time.)

Open vSwitch 2.10.90 6

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

A controller can suppress output to a port by setting itsOFPPC_NO_FORWARD flag using an OpenFlow
OFPT_MOD_PORT request (ovs−ofctl mod−port provides a command-line interface to set this flag).
When output is disabled,output actions (and other actions that output to the port) are allowed but have no
effect.

Open vSwitch allows output to a port that does not exist, although OpenFlow allows switches to reject such
actions.

Output to the Input Port

OpenFlow requires a switch to ignore attempts to send a packet out its ingress port in the most straightfor-
ward way. For example,output:234 has no effect if the packet has ingress port 234. The rationale is that
dropping these packets makes it harder to loop the network. Sometimes this behavior can even be conve-
nient, e.g. it is often the desired behavior in a flow that forwards a packet to several ports (‘‘floods’’ the
packet).

Sometimes one really needs to send a packet out its ingress port (‘‘hairpin’’). In this case, usein_port to
explicitly output the packet to its input port, e.g.:

$ ovs−ofctl add−flow br0 in_port=2,actions=in_port

This also works in some circumstances where the flow doesn’t match on the input port. For example, if you
know that your switch has five ports numbered 2 through 6, then the following will send every received
packet out every port, even its ingress port:

$ ovs−ofctl add−flow br0 actions=2,3,4,5,6,in_port

or, equivalently:

$ ovs−ofctl add−flow br0 actions=all,in_port

Sometimes, in complicated flow tables with multiple levels of resubmit actions, a flow needs to output to a
particular port that may or may not be the ingress port. It’s difficult to take advantage of output toin_port
in this situation. To help, Open vSwitch provides, as an OpenFlow extension, the ability to modify the
in_port field. Whatever value is currently in thein_port field is both the port to which output will be
dropped and the destination forin_port . This means that the following adds flows that reliably output to
port 2 or to ports 2 through 6, respectively:

$ ovs−ofctl add−flow br0 "in_port=2,actions=load:0−>in_port,2"
$ ovs−ofctl add−flow br0 "actions=load:0−>in_port,2,3,4,5,6"

If in_port is important for matching or other reasons, one may save and restore it on the stack:

$ ovs−ofctl add−flow br0 actions="push:in_port,\
load:0−>in_port,\
2,3,4,5,6,\
pop:in_port"

Conformance:

All versions of OpenFlow and Open vSwitch supportoutput to a literalport. Output to a register is an
OpenFlow extension introduced in Open vSwitch 1.3. Output with truncation is an OpenFlow extension
introduced in Open vSwitch 2.6.

The controller action
Syntax:

controller
controller: max_len

Open vSwitch 2.10.90 7

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

controller(key[=value], ...)

Sends the packet and its metadata to an OpenFlow controller or controllers encapsulated in an OpenFlow
‘‘ packet-in’’ message. The supported options are:

max_len=max_len
Limit to max_len the number of bytes of the packet to send in the ‘‘packet-in.’’ A
max_len of 0 prevents any of the packet from being sent (thus, only metadata is
included). By default, the entire packet is sent, equivalent to amax_lenof 65535.

reason=reason
Specifyreasonas the reason for sending the message in the ‘‘packet-in.’’ T he supported
reasons areno_match, action, invalid_ttl , action_set, group, and packet_out. The
default reason isaction.

id=controller_id
Specifycontroller-id, a 16-bit integer, as the connection ID of the OpenFlow controller or
controllers to which the ‘‘packet-in’’ message should be sent. The default is zero. Zero is
also the default connection ID for each controller connection, and a given controller con-
nection will only have a nonzero connection ID if its controller uses the
NXT_SET_CONTROLLER_ID Open vSwitch extension to OpenFlow.

userdata=hh...
Supplies the bytes represented as hex digits hh as additional data to the controller in the
‘‘ packet-in’’ message. Pairs of hex digits may be separated by periods for readability.

pause Causes the switch to freeze the packet’s trip through Open vSwitch flow tables and serial-
izes that state into the packet-in message as a ‘‘continuation,’’ an additional property in
theNXT_PACKET_IN2 message. The controller can later send the continuation back to
the switch in anNXT_RESUME message, which will restart the packet’s traversal from
the point where it was interrupted. This permits an OpenFlow controller to interpose on a
packet midway through processing in Open vSwitch.

Conformance:

All versions of OpenFlow and Open vSwitch supportcontroller action and itsmax_lenoption. Theuser-
data andpauseoptions require the Open vSwitchNXAST_CONTROLLER2 extension action added in
Open vSwitch 2.6. In the absence of these options, thereason(other thanreason=action) and controller_id
(option thancontroller_id=0) options require the Open vSwitchNXAST_CONTROLLER extension
action added in Open vSwitch 1.6.

The enqueue action
Syntax:

enqueue(port,queue)
enqueue:port:queue

Enqueues the packet on the specifiedqueuewithin portport.

port must be an OpenFlow port number or name as described under ‘‘Port Specifications’’ above. port may
be in_port or local but the other standard OpenFlow ports are not allowed.

queuemust be a a number between 0 and 4294967294 (0xfffffff e), inclusive. The number of actually sup-
ported queues depends on the switch. Some OpenFlow implementations do not support queuing at all. In
Open vSwitch, the supported queues vary depending on the operating system, datapath, and hardware in
use. Use theQoSandQueuetables in the Open vSwitch database to configure queuing on individual Open-
Flow ports (seeovs−vswitchd.conf.db(5) for more information).

Conformance:

Only OpenFlow 1.0 supportsenqueue. OpenFlow 1.1 added theset_queueaction to use in its place along
with output.

Open vSwitch translatesenqueue to a sequence of three actions in OpenFlow 1.1 or later:

Open vSwitch 2.10.90 8

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

set_queue:queue, output: port, pop_queue. This is equivalent in behavior as long as the flow table does
not otherwise useset_queue, but it relies on thepop_queueOpen vSwitch extension action.

The bundle and bundle_load actions
Syntax:

bundle(fields, basis, algorithm, ofport, slaves:port...)
bundle_load(fields, basis, algorithm, ofport, dst, slaves:port...)

These actions choose a port (‘‘slave’’) from a comma-separated OpenFlow port list. After selecting the port,
bundle outputs to it, whereasbundle_loadwrites its port number todst, which must be a field or subfield
in the syntax described under ‘‘Field Specifications’’ above.

These actions hash a set offields using basisas a universal hash parameter, then apply the bundle link
selectionalgorithmto choose aport.

fieldsmust be one of the following. For the options with ‘‘symmetric’’ in the name, reversing source and
destination addresses yields the same hash:

eth_src Ethernet source address.

nw_src IPv4 or IPv6 source address.

nw_dst IPv4 or IPv6 destination address.

symmetric_l4
Ethernet source and destination, Ethernet type, VLAN ID or IDs (if any), IPv4 or IPv6
source and destination, IP protocol, TCP or SCTP (but not UDP) source and destination.

symmetric_l3l4
IPv4 or IPv6 source and destination, IP protocol, TCP or SCTP (but not UDP) source and
destination.

symmetric_l3l4+udp
Like symmetric_l3l4but include UDP ports.

Conformance:

Open vSwitch 1.2 introduced thebundle andbundle_loadOpenFlow extension actions.

The group action
Syntax:

group:group

Outputs the packet to the OpenFlow group group, which must be a number in the range 0 to 4294967040
(0xffffff 00). The group must exist or Open vSwitch will refuse to add the flow. When a group is deleted,
Open vSwitch also deletes all of the flows that output to it.

Groups contain action sets, whose semantics are described above in the section ‘‘A ction Sets’’. The seman-
tics of action sets can be surprising to users who expect action list semantics, since action sets reorder and
sometimes ignore actions.

A group action usually executes the action set or sets in one or more group buckets. Open vSwitch saves
the packet and metadata before it executes each bucket, and then restores it afterward. Thus, when a group
executes more than one bucket, this means that each bucket executes on the same packet and metadata.
Moreover, reg ardless of the number of buckets executed, the packet and metadata are the same before and
after executing the group.

Sometimes saving and restoring the packet and metadata can be undesirable. In these situations, work-
arounds are possible. For example, consider a pipeline design in which aselectgroup bucket is to commu-
nicate to a later stage of processing a value based on which bucket was selected. An obvious design would
be for the bucket to communicate the value viaset_fieldon a register. This does not work because registers
are part of the metadata thatgroup saves and restores. A design that would work would be for the bucket to
recursively invoke the rest of the pipeline withresubmit rather than to attempt to return it. Another possi-
bility is for the bucket to usepush to put the value on the stack for the caller topop off, sincegroup pre-
serves only packet data and metadata, not the stack.

Open vSwitch 2.10.90 9

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

An exit action within a group bucket terminates only execution of that bucket, not other buckets or the over-
all pipeline.

Conformance:

OpenFlow 1.1 introducedgroup. Open vSwitch 2.6 and later also supportsgroup as an extension to Open-
Flow 1.0.

Open vSwitch 2.10.90 10

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

ENCAPSULATION AND DECAPSULATION ACTIONS
The strip_vlan and pop actions

Syntax:
strip_vlan
pop_vlan

Removes the outermost VLAN tag, if any, from the packet.

The two names for this action are synonyms with no semantic difference. The OpenFlow 1.0 specification
uses the namestrip_vlan and later versions usepop_vlan, but OVS accepts either name regardless of ver-
sion.

In OpenFlow 1.1 and later, consistency rules allow strip_vlan only in a flow that matches only packets with
a VLAN tag (or following an action that pushes a VLAN tag, such aspush_vlan). See ‘‘Inconsistencies’’,
above, for more information.

Conformance:

All versions of OpenFlow and Open vSwitch support this action.

The push_vlan action
Syntax:

push_vlan:ethertype

Pushes a new outermost VLAN onto the packet. Uses TPIDethertype, which must be0x8100 for an
802.1Q C-tag or0x88a8for a 802.1ad S-tag.

Conformance:

OpenFlow 1.1 and later supports this action. Open vSwitch 2.8 added support for multiple VLAN tags
(with a limit of 2) and 802.1ad S-tags.

The push_mpls action
Syntax:

push_mpls:ethertype

Pushes a new outermost MPLS label stack entry (LSE) onto the packet and changes the packet’s Ethertype
to ethertype, which must be eitherB0x8847or 0x8848.

If the packet did not already contain any MPLS labels, initializes the new LSE as:

Label 2, if the packet contains IPv6, 0 otherwise.

TC The low 3 bits of the packet’s DSCP value, or 0 if the packet is not IP.

TTL Copied from the IP TTL, or 64 if the packet is not IP.

If the packet did already contain an MPLS label, initializes the new outermost label as a copy of the exist-
ing outermost label.

OVS currently supports at most 3 MPLS labels.

This action applies only to Ethernet packets.

Conformance:

Open vSwitch 1.11 introduced support for MPLS. OpenFlow 1.1 and later supportpush_mpls. Open
vSwitch implementspush_mplsas an extension to OpenFlow 1.0.

The pop_mpls action
Syntax:

pop_mpls:ethertype

Strips the outermost MPLS label stack entry and changes the packet’s Ethertype toethertype.

This action applies only to Ethernet packets with at least one MPLS label. If there is more than one MPLS
label, thenethertypeshould be an MPLS Ethertype (B0x8847or 0x8848).

Open vSwitch 2.10.90 11

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

Conformance:

Open vSwitch 1.11 introduced support for MPLS. OpenFlow 1.1 and later supportpop_mpls. Open
vSwitch implementspop_mplsas an extension to OpenFlow 1.0.

The encap action
Syntax:

encap(nsh([md_type=md_type], [tlv(class,type,value)]...))
encap(ethernet)

Theencapaction encapsulates a packet with a specified header. It has variants for different kinds of encap-
sulation.

The encap(nsh(...)) variant encapsulates an Ethernet frame with NSH. Themd_typemay be1 or 2 for
metadata type 1 or 2, defaulting to 1. For metadata type 2, TLVs may be specified withclassas a 16-bit
hexadecimal integer beginning with0x, typeas an 8-bit decimal integer, and valuea sequence of pairs of
hex digits beginning with0x. For example:

encap(nsh(md_type=1))
Encapsulates the packet with an NSH header with metadata type 1.

encap(nsh(md_type=2,tlv(0x1000,10,0x12345678)))
Encapsulates the packet with an NSH header, NSH metadata type 2, and an NSH TLV
with class 0x1000, type 10, and the 4-byte value 0x12345678.

The encap(ethernet)variant encapsulate a bare L3 packet in an Ethernet frame. The Ethernet type is ini-
tialized to the L3 packet’s type, e.g. 0x0800 if the L3 packet is IPv4. The Ethernet source and destination
are initially zeroed.

Conformance:

This action is an Open vSwitch extension to OpenFlow 1.3 and later, introduced in Open vSwitch 2.8.

The decap action
Syntax:

decap

Removes an outermost encapsulation from the packet:

• If the packet is an Ethernet packet, removes the Ethernet header, which changes the
packet into a bare L3 packet. If the packet has VLAN tags, raises an unsupported packet
type error (see ‘‘Error Handling’’, above).

• Otherwise, if the packet is an NSH packet, removes the NSH header, rev ealing the inner
packet. Open vSwitch supports Ethernet, IPv4, IPv6, and NSH inner packet types. Other
types raise unsupported packet type errors.

• Otherwise, raises an unsupported packet type error.

Conformance:

This action is an Open vSwitch extension to OpenFlow 1.3 and later, introduced in Open vSwitch 2.8.

Open vSwitch 2.10.90 12

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

FIELD MODIFICATION ACTIONS
These actions modify packet data and metadata fields.

The set_field and load actions
Syntax:

set_field:value[/mask]−>dst
load:value−>dst

These actions loads a literal value into a field or part of a field. Theset_fieldaction takesvaluein the cus-
tomary syntax for fielddst, e.g. 00:11:22:33:44:55for an Ethernet address, anddstas the field’s name. The
optionalmaskallows part of a field to be set.

The load action takesvalueas an integer value (in decimal or prefixed by0x for hexadecimal) anddstas a
field or subfield in the syntax described under ‘‘Field Specifications’’ above.

The following all set the Ethernet source address to 00:11:22:33:44:55:

• set_field:00:11:22:33:44:55−>eth_src

• load:0x001122334455−>eth_src

• load:0x001122334455−>OXM_OF_ETH_SRC[]

The following all set the multicast bit in the Ethernet destination address:

• set_field:01:00:00:00:00:00/01:00:00:00:00:00−>eth_dst

• load:1−>eth_dst[40]

Open vSwitch prohibits aset_fieldor load action whosedst is not guaranteed to be part of the packet; for
example,set_fieldof nw_dst is only allowed in a flow that matches on Ethernet type 0x800. In some cases,
such as in an action set, Open vSwitch can’t statically check thatdst is part of the packet, and in that case if
it is not then Open vSwitch treats the action as a no-op.

Conformance:

Open vSwitch 1.1 introducedNXAST_REG_LOAD as a extension to OpenFlow 1.0 and usedload to
express it. Later, OpenFlow 1.2 introduced a standardOFPAT_SET_FIELD action that was restricted to
loading entire fields, so Open vSwitch added the formset_field with this restriction. OpenFlow 1.5
extendedOFPAT_SET_FIELD to the point that it became a superset ofNXAST_REG_LOAD . Open
vSwitch translates either syntax as necessary for the OpenFlow version in use: in OpenFlow 1.0 and 1.1,
NXAST_REG_LOAD ; in OpenFlow 1.2, 1.3, and 1.4,NXAST_REG_LOAD for load or for loading a
subfield,OFPAT_SET_FIELD otherwise; and OpenFlow 1.5 and later,OFPAT_SET_FIELD.

The move action
Syntax:

move:src−>dst

Copies the named bits from field or subfieldsrc to field or subfielddst. src anddstshould fields or subfields
in the syntax described under ‘‘Field Specifications’’ above. The two fields or subfields must have the same
width.

Examples:

• move:reg0[0..5]−>reg1[26..31]copies the six bits numbered 0 through 5 in register 0
into bits 26 through 31 of register 1.

• move:reg0[0..15]−>vlan_tci copies the least significant 16 bits of register 0 into the
VLAN TCI field.

Conformance:

In OpenFlow 1.0 through 1.4,move ordinarily uses an Open vSwitch extension to OpenFlow. In OpenFlow
1.5, move uses the OpenFlow 1.5 standardOFPAT_COPY_FIELD action. The ONF has also made
OFPAT_COPY_FIELD available as an extension to OpenFlow 1.3. Open vSwitch 2.4 and later under-
stands this extension and uses it if a controller uses it, but for backward compatibility with older versions of

Open vSwitch 2.10.90 13

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

Open vSwitch,ovs−ofctl does not use it.

The mod_dl_src and mod_dl_dst actions
Syntax:

mod_dl_src:mac
mod_dl_dst:mac

Sets the Ethernet source or destination address, respectively, to mac, which should be expressed in the form
xx:xx:xx:xx:xx:xx.

For L3-only packets, that is, those that lack an Ethernet header, this action has no effect.

Conformance:

OpenFlow 1.0 and 1.1 have specialized actions for these purposes. OpenFlow 1.2 and later do not, so Open
vSwitch translates them to appropriateOFPAT_SET_FIELD actions for those versions,

The mod_nw_src and mod_nw_dst actions
Syntax:

mod_nw_src:ip
mod_nw_dst:ip

Sets the IPv4 source or destination address, respectively, to ip, which should be expressed in the form
w.x.y.z.

In OpenFlow 1.1 and later, consistency rules allow these actions only in a flow that matches only packets
that contain an IPv4 header (or following an action that adds an IPv4 header, e.g. pop_mpls:0x0800). See
‘‘ Inconsistencies’’, above, for more information.

Conformance:

OpenFlow 1.0 and 1.1 have specialized actions for these purposes. OpenFlow 1.2 and later do not, so Open
vSwitch translates them to appropriateOFPAT_SET_FIELD actions for those versions,

The mod_nw_tos and mod_nw_ecn actions
Syntax:

mod_nw_tos:tos
mod_nw_ecn:ecn

Themod_nw_tosaction sets the DSCP bits in the IPv4 ToS/DSCP or IPv6 traffic class field totos, which
must be a multiple of 4 between 0 and 255. This action does not modify the two least significant bits of the
ToS field (the ECN bits).

Themod_nw_ecnaction sets the ECN bits in the IPv4 ToS or IPv6 traffic class field toecn, which must be
a value between 0 and 3, inclusive. This action does not modify the six most significant bits of the field (the
DSCP bits).

In OpenFlow 1.1 and later, consistency rules allow these actions only in a flow that matches only packets
that contain an IPv4 or IPv6 header (or following an action that adds such a header). See ‘‘Inconsistencies’’,
above, for more information.

Conformance:

OpenFlow 1.0 has amod_nw_tosaction but notmod_nw_ecn. Open vSwitch implements the latter in
OpenFlow 1.0 as an extension usingNXAST_REG_LOAD . OpenFlow 1.1 has specialized actions for
these purposes. OpenFlow 1.2 and later do not, so Open vSwitch translates them to appropriate
OFPAT_SET_FIELD actions for those versions,

The mod_tp_src and mod_tp_dst actions
Syntax:

mod_tp_src:port
mod_tp_dst:port

Sets the TCP or UDP or SCTP source or destination port, respectively, to port. Both IPv4 and IPv6 are sup-
ported.

Open vSwitch 2.10.90 14

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

In OpenFlow 1.1 and later, consistency rules allow these actions only in a flow that matches only packets
that contain a TCP or UDP or SCTP header. See ‘‘Inconsistencies’’, above, for more information.

Conformance:

OpenFlow 1.0 and 1.1 have specialized actions for these purposes. OpenFlow 1.2 and later do not, so Open
vSwitch translates them to appropriateOFPAT_SET_FIELD actions for those versions,

The dec_ttl action
Syntax:

dec_ttl
dec_ttl(id1, [id2]...)

Decrement TTL of IPv4 packet or hop limit of IPv6 packet. If the TTL or hop limit is initially 0 or 1, no
decrement occurs, as packets reaching TTL zero must be rejected. Instead, Open vSwitch sends a ‘‘packet-
in’’ message with reason codeOFPR_INVALID_TTL to each connected controller that has enabled
receiving such messages, and stops processing the current set of actions. (However, if the current set of
actions was reached throughresubmit, the remaining actions in outer levels resume processing.)

As an Open vSwitch extension to OpenFlow, this action supports the ability to specify a list of controller
IDs. Open vSwitch will only send the message to controllers with the given ID or IDs. Specifying no list is
equivalent to specifying a single controller ID of zero.

Sets the TCP or UDP or SCTP source or destination port, respectively, to port. Both IPv4 and IPv6 are sup-
ported.

In OpenFlow 1.1 and later, consistency rules allow these actions only in a flow that matches only packets
that contain an IPv4 or IPv6 header. See ‘‘Inconsistencies’’, above, for more information.

Conformance:

All versions of OpenFlow and Open vSwitch support this action.

The set_mpls_label, set_mpls_tc, and set_mpls_ttl actions
Syntax:

set_mpls_label:label
set_mpls_tc:tc
set_mpls_ttl:ttl

The set_mpls_labelaction sets the label of the packet’s outer MPLS label stack entry. label should be a
20-bit value that is decimal by default; use a0x prefix to specify the value in hexadecimal.

The set_mpls_tcaction sets the traffic class of the packet’s outer MPLS label stack entry. tc should be in
the range 0 to 7, inclusive.

The set_mpls_ttl action sets the TTL of the packet’s outer MPLS label stack entry. ttl should be in the
range 0 to 255 inclusive.

In OpenFlow 1.1 and later, consistency rules allow these actions only in a flow that matches only packets
that contain an MPLS label (or following an action that adds an MPLS label, e.g.push_mpls:0x8847). See
‘‘ Inconsistencies’’, above, for more information.

Conformance:

OpenFlow 1.0 does not support MPLS, but Open vSwitch implements these actions as extensions. Open-
Flow 1.1 has specialized actions for these purposes. OpenFlow 1.2 and later do not, so Open vSwitch trans-
lates them to appropriateOFPAT_SET_FIELD actions for those versions,

The dec_mpls_ttl and dec_nsh_ttl actions
Syntax:

dec_mpls_ttl
dec_nsh_ttl

These actions decrement the TTL of the packet’s outer MPLS label stack entry or its NSH header, respec-
tively. If the TTL is initially 0 or 1, no decrement occurs. Instead, Open vSwitch sends a ‘‘packet-in’’

Open vSwitch 2.10.90 15

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

message with reason codeBOFPR_INVALID_TTL to OpenFlow controllers with ID 0, if it has enabled
receiving them. Processing the current set of actions then stops. (However, if the current set of actions was
reached throughresubmit, remaining actions in outer levels resume processing.)

In OpenFlow 1.1 and later, consistency rules allow this actions only in a flow that matches only packets that
contain an MPLS label or an NSH header, respectively. See ‘‘Inconsistencies’’, above, for more informa-
tion.

Conformance:

Open vSwitch 1.11 introduced support for MPLS. OpenFlow 1.1 and later supportdec_mpls_ttl. Open
vSwitch implementsdec_mpls_ttlas an extension to OpenFlow 1.0.

Open vSwitch 2.8 introduced support for NSH, although the NSH draft changed after release so that only
Open vSwitch 2.9 and later conform to the final protocol specification. Thedec_nsh_ttlaction and NSH
support in general is an Open vSwitch extension not supported by any version of OpenFlow.

Open vSwitch 2.10.90 16

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

METAD AT A ACTIONS
The set_tunnel action

Syntax:
set_tunnel:id
set_tunnel64:id

Many kinds of tunnels support a tunnel ID, e.g. VXLAN and Geneve hav ea 24-bit VNI, and GRE has an
optional 32-bit key. This action sets the value used for tunnel ID in such tunneled packets, although whether
it is used for a particular tunnel depends on the tunnel’s configuration. See the tunnel ID documentation in
ovs−fields(7) for more information.

Conformance:

These actions are OpenFlow extensions.set_tunnel was introduced in Open vSwitch 1.0.set_tunnel64,
which is needed ifid is wider than 32 bits, was added in Open vSwitch 1.1. Both actions always set the
entire tunnel ID field.

Open vSwitch supports these actions in all versions of OpenFlow, but in OpenFlow 1.2 and later it trans-
lates them to an appropriate standardizedOFPAT_SET_FIELD action.

The set_queue and pop_queue actions
Syntax:

set_queue:queue
pop_queue

Theset_queueaction sets the queue ID to be used for subsequent output actions toqueue, which must be a
32-bit integer. The range of meaningful values ofqueue, and their meanings, varies greatly from one Open-
Flow implementation to another. Even within a single implementation, there is no guarantee that all Open-
Flow ports have the same queues configured or that all OpenFlow ports in an implementation can be config-
ured the same way queue-wise. For more information, see the documentation for the output queue field in
ovs−fields(7).

The pop_queuerestores the output queue to the default that was set when the packet entered the switch
(generally 0).

Four billion queues ought to be enough for anyone:〈https://mailman.stanford.edu/
pipermail/openflow-spec/2009-August/000394.html 〉

Conformance:

OpenFlow 1.1 introduced theset_queueaction. Open vSwitch also supports it as an extension in OpenFlow
1.0.

Thepop_queueaction is an Open vSwitch extension.

Open vSwitch 2.10.90 17

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

FIREWALLING ACTIONS
Open vSwitch is often used to implement a firewall. The preferred way to implement a firewall is ‘‘connec-
tion tracking,’’ t hat is, to keep track of the connection state of individual TCP sessions. Thect action
described in this section, added in Open vSwitch 2.5, implements connection tracking. For new deploy-
ments, it is the recommended way to implement firewalling with Open vSwitch.

Beforect was added, Open vSwitch did not have built-in support for connection tracking. Instead, Open
vSwitch supported thelearn action, which allows a received packet to add a flow to an OpenFlow flow ta-
ble. This could be used to implement a primitive form of connection tracking: packets passing through the
firewall in one direction could create flows that allowed response packets back through the firewall in the
other direction. The additionalfin_timeout action allowed the learned flows to expire quickly after TCP
session termination.

The ct action
Syntax:

ct(argument]...)
ct(commit[, argument]...)

The action has two modes of operation, distinguished by whethercommit is present. The following argu-
ments may be present in either mode:

zone=value
A zone is a 16-bit id that isolates connections into separate domains, allowing overlap-
ping network addresses in different zones. If a zone is not provided, then the default is 0.
The valuemay be specified either as a 16-bit integer literal or a field or subfield in the
syntax described under ‘‘Field Specifications’’ above.

Withoutcommit, this action sends the packet through the connection tracker. The connection tracker keeps
track of the state of TCP connections for packets passed through it. For each packet through a connection, it
checks that it satisfies TCP invariants and signals the connection state to later actions using thect_state
metadata field, which is documented inovs−fields(7).

In this form,ct forks the OpenFlow pipeline:

• In one fork,ct passes the packet to the connection tracker. Afterward, it reinjects the
packet into the OpenFlow pipeline with the connection tracking fields initialized. The
ct_statefield is initialized with connection state andct_zoneto the connection tracking
zone specified on thezone argument. If the connection is one that is already tracked,
ct_mark and ct_label to its existing mark and label, respectively; otherwise they are
zeroed. In addition,ct_nw_proto, ct_nw_src, ct_nw_dst, ct_ipv6_src, ct_ipv6_dst,
ct_tp_src, and ct_tp_dst are initialized appropriately for the original direction connec-
tion. See theresubmit action for a way to search the flow table with the connection track-
ing original direction fields swapped with the packet 5-tuple fields. Seeovs−fields(7) for
details on the connection tracking fields.

• In the other fork, the original instance of the packet continues independent processing fol-
lowing the ct action. Thect_state field and other connection tracking metadata are
cleared.

Withoutcommit, thect action accepts the following arguments:

table=table
Sets the OpenFlow table where the packet is reinjected. Thetable must be a number
between 0 and 254 inclusive, or a table’s name. Iftable is not specified, then the packet is
not reinjected.

nat
nat(type=addrs[:ports][,flag]...)

Specify address and port translation for the connection being tracked. Thetypemust be
src, for source address/port translation (SNAT), or dst, for destination address/port trans-
lation (DNAT). Setting up address translation for a new connection takes effect only if the

Open vSwitch 2.10.90 18

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

connection is later committed withct(commit...).

Thesrc anddst options take the following arguments:

addrs The IP addressaddr or rangeaddr1−addr2 from which the translated address
should be selected. If only one address is given, then that address will always be
selected, otherwise the address selection can be informed by the optional persis-
tent flag as described below. Either IPv4 or IPv6 addresses can be provided, but
both addresses must be of the same type, and the datapath behavior is undefined
in case of providing IPv4 address range for an IPv6 packet, or IPv6 address
range for an IPv4 packet. IPv6 addresses must be bracketed with[and] if a port
range is also given.

ports The L4 port or rangeport1−port2 from which the translated port should be
selected. In case of a mapping conflict the datapath may choose any other non-
conflicting port number instead, even when no port range is specified. The port
number selection can be informed by the optionalrandom and hash flags
described below.

The optional flags are:

random
The selection of the port from the given range should be done using a fresh ran-
dom number. This flag is mutually exclusive with hash.

hash The selection of the port from the given range should be done using a datapath
specific hash of the packet’s IP addresses and the other, non-mapped port num-
ber. This flag is mutually exclusive with random.

persistent
The selection of the IP address from the given range should be done so that the
same mapping can be provided after the system restarts.

If alg is specified for the committingct action that also includesnat with a src or dst
attribute, then the datapath tries to set up the helper to be NAT -aw are. This functionality
is datapath specific and may not be supported by all datapaths.

A ‘ ‘bare’’ nat argument with no options will only translate the packet being processed in
the way the connection has been set up with an earlier, committedct action. Anat action
with src or dst, when applied to a packet belonging to an established (rather than new)
connection, will behave the same as a barenat.

Open vSwitch 2.6 introducednat. Linux 4.6 was the earliest upstream kernel that imple-
mentedct support fornat.

With commit, the connection tracker commits the connection to the connection tracking module. Thecom-
mit flag should only be used from the pipeline within the first fork ofct withoutcommit. Information about
the connection is stored beyond the lifetime of the packet in the pipeline. Somect_state flags are only
available for committed connections.

The following options are available only withcommit:

force A committed connection always has the directionality of the packet that caused the con-
nection to be committed in the first place. This is the ‘‘original direction’’ of the connec-
tion, and the opposite direction is the ‘‘reply direction’’. If a connection is already com-
mitted, but it is in the wrong direction,force effectively terminates the existing connec-
tion and starts a new one in the current direction. This flag has no effect if the original
direction of the connection is already the same as that of the current packet.

exec(action...)
Perform eachactionwithin the context of connection tracking. Only actions which mod-
ify the ct_mark or ct_label fields are accepted withinexecaction, and these fields may
only be modified with this option. For example:

Open vSwitch 2.10.90 19

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

set_field:value[/mask]−>ct_mark
Store a 32-bit metadata value with the connection. Subsequent lookups for pack-
ets in this connection will populatect_mark when the packet is sent to the con-
nection tracker with the table specified.

set_field:value[/mask]−>ct_label
Store a 128-bit metadata value with the connection. Subsequent lookups for
packets in this connection will populatect_label when the packet is sent to the
connection tracker with the table specified.

alg=alg
Specify application layer gateway alg to track specific connection types. If subsequent
related connections are sent through thect action, then therel flag in thect_statefield
will be set. Supported types include:

ftp Look for negotiation of FTP data connections. Specify this option for FTP con-
trol connections to detect related data connections and populate therel flag for
the data connections.

tftp Look for negotiation of TFTP data connections. Specify this option for TFTP
control connections to detect related data connections and populate therel flag
for the data connections.

Related connections inheritct_mark from that stored with the original connection (i.e.
the connection created byct(alg=...)).

With the Linux datapath, global sysctl options affect ct behavior. In particular, if net.netfilter.nf_con-
ntrack_helper is enabled, which it is by default until Linux 4.7, then application layer gateway helpers
may be executed even if alg is not specified. For security reasons, the netfilter team recommends users dis-
able this option. For further details, please see〈http://www.netfilter.org/
news.html#2012−04−03 〉 .

Thect action may be used as a primitive to construct stateful firewalls by selectively committing some traf-
fic, then matchingct_stateto allow established connections while denying new connections. The following
flows provide an example of how to implement a simple firewall that allows new connections from port 1 to
port 2, and only allows established connections to send traffic from port 2 to port 1:

table=0,priority=1,action=drop
table=0,priority=10,arp,action=normal
table=0,priority=100,ip,ct_state=−trk,action=ct(table=1)
table=1,in_port=1,ip,ct_state=+trk+new,action=ct(commit),2
table=1,in_port=1,ip,ct_state=+trk+est,action=2
table=1,in_port=2,ip,ct_state=+trk+new,action=drop
table=1,in_port=2,ip,ct_state=+trk+est,action=1

If ct is executed on IPv4 (or IPv6) fragments, then the message is implicitly reassembled before sending to
the connection tracker and refragmented upon output, to the original maximum received fragment size.
Reassembly occurs within the context of the zone, meaning that IP fragments in different zones are not
assembled together. Pipeline processing for the initial fragments is halted. When the final fragment is
received, the message is assembled and pipeline processing continues for that flow. Packet ordering is not
guaranteed by IP protocols, so it is not possible to determine which IP fragment will cause message
reassembly (and therefore continue pipeline processing). As such, it is strongly recommended that multiple
flows should not executect to reassemble fragments from the same IP message.

Conformance:

The ct action was introduced in Open vSwitch 2.5. Some of its features were introduced later, noted indi-
vidually above.

Open vSwitch 2.10.90 20

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

The ct_clear action
Syntax:

ct_clear

Clears connection tracking state from the flow, zeroingct_state, ct_zone, ct_mark, andct_label.

This action was introduced in Open vSwitch 2.6.90.

The learn action
Syntax:

learn(argument...)

The learn action adds or modifies a flow in an OpenFlow table, similar toovs−ofctl −−strict mod−flows.
The arguments specify the match fields, actions, and other properties of the flow to be added or modified.

Match fields for the new flow are specified as follows. At least one match field should ordinarily be speci-
fied:

field=value
Specifies thatfield, in the new flow, must match the literalvalue, e.g. dl_type=0x800.
Shorthand match syntax, such asip in place ofdl_type=0x800, is not supported.

field=src
Specifies thatfield in the new flow must matchsrc taken from the packet currently being
processed. For example,udp_dst=udp_src, applied to a UDP packet with source port 53,
creates a flow which matchesudp_dst=53. fieldandsrc must have the same width.

field Shorthand for the previous form whenfield andsrc are the same. For example,udp_dst,
applied to a UDP packet with destination port 53, creates a flow which matches
udp_dst=53.

Thefield andsrc arguments above should be fields or subfields in the syntax described under ‘‘Field Speci-
fications’’ above.

Match field specifications must honor prerequisites for both the flow with the learn and the new flow that it
creates. Consider the following complete flow, in the syntax accepted byovs−ofctl. If the flow’s match on
udp were omitted, then the flow would not satisfy the prerequisites for thelearn action’s use ofudp_src. If
dl_type=0x800or nw_proto were omitted fromlearn, then the new flow would not satisfy the prerequisite
for its match onudp_dst. For more information on prerequisites, please refer toovs−fields(7):

udp, actions=learn(dl_type=0x800, nw_proto=17, udp_dst=udp_src)

Actions for the new flow are specified as follows. At least one action should ordinarily be specified:

load:value−>dst
Adds aload action to the new flow that loads the literalvalue into dst. The syntax is the
same as theload action explained in the ‘‘Header Modification’’ section.

load:src−>dst
Adds aload action to the new flow that loadssrc, a field or subfield from the packet being
processed, intodst.

output:field
Adds anoutput action to the new flow’s actions that outputs to the OpenFlow port taken
from field, which must be a field as described above.

fin_idle_timeout=seconds
fin_hard_timeout=seconds

Adds afin_timeout action with the specified arguments to the new flow. This feature was
added in Open vSwitch 1.5.90.

The following additional arguments are optional:

Open vSwitch 2.10.90 21

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

idle_timeout=seconds
hard_timeout=seconds
priority= value
cookie=value
send_flow_rem

These arguments have the same meaning as in the usual flow syntax documented in
ovs−ofctl(8).

table=table
The table in which the new flow should be inserted. Specify a decimal number between 0
and 254 inclusive or the name of a table. The default, if table is unspecified, is table 1
(not 0).

delete_learned
When this flag is specified, deleting the flow that contains thelearn action will also
delete the flows created bylearn. Specifically, when the lastlearn action with this flag
and particulartable andcookie values is removed, the switch deletes all of the flows in
the specified table with the specified cookie.

This flag was added in Open vSwitch 2.4.

limit= number
If the number of flows in the new flow’s table with the same cookie exceedsnumber, the
action will not add a new flow. By default, or withlimit=0 , there is no limit.

This flag was added in Open vSwitch 2.8.

result_dst=field[bit]
If learn fails (because the number of flows exceedslimit), the action setsfield[bit] to 0,
otherwise it will be set to 1.field[bit] must be a single bit.

This flag was added in Open vSwitch 2.8.

By itself, thelearn action can only put two kinds of actions into the flows that it creates:load andoutput
actions. Iflearn is used in isolation, these are severe limits.

However, learn is not meant to be used in isolation. It is a primitive meant to be used together with other
Open vSwitch features to accomplish a task. Its existing features are enough to accomplish most tasks.

Here is an outline of a typical pipeline structure that allows for versatile behavior usinglearn:

• Flows in tableA contain alearn action, that populates flows in tableL, that use aload
action to populate registerRwith information about what was learned.

• Flows in tableB contain two sequential resubmit actions: one to tableL and another one
to tableB+1.

• Flows in tableB+1 match on registerR and act differently depending on what the flows in
tableL loaded into it.

This approach can be used to implement manylearn-based features. For example:

• Resubmit to a table selected based on learned information, e.g. see〈https://
mail.openvswitch.org/pipermail/ovs-discuss/2016-June/
021694.html 〉 .

• MAC learning in the middle of a pipeline, as described in the ‘‘Open vSwitch Advanced
Features Tutorial’’ in the OVS documentation.

• TCP state based firewalling, by learning outgoing connections based on SYN packets and
matching them up with incoming packets. (This is usually better implemented using the
ct action.)

• At least some of the features described in T. A. Hoff, ‘‘Extending Open vSwitch to Facili-
tate Creation of Stateful SDN Applications’’.

Open vSwitch 2.10.90 22

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

Conformance:

The learn action is an Open vSwitch extension to OpenFlow added in Open vSwitch 1.3. Some features of
learn were added in later versions, as noted individually above.

The fin_timeout action
Syntax:

fin_timeout(key=value...)

This action changes the idle timeout or hard timeout, or both, of the OpenFlow flow that contains it, when
the flow matches a TCP packet with the FIN or RST flag. When such a packet is observed, the action
reduces the rule’s timeouts to those specified on the action. If the rule’s existing timeout is already shorter
than the one that the action specifies, then that timeout is unaffected.

The timeouts are specified as key-value pairs:

idle_timeout=seconds
Causes the flow to expire after the given number of seconds of inactivity.

hard_timeout=seconds
Causes the flow to expire after the given number ofseconds, reg ardless of activity. (sec-
ondsspecifies time since the flow’s creation, not since the receipt of the FIN or RST.)

This action is normally added to a learned flow by the learn action. It is unlikely to be useful otherwise.

Conformance:

This Open vSwitch extension action was added in Open vSwitch 1.5.90.

Open vSwitch 2.10.90 23

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

PROGRAMMING AND CONTROL FLO W ACTIONS
The resubmit action

Syntax:
resubmit:port
resubmit([port],[table][,ct])

Searches an OpenFlow flow table for a matching flow and executes the actions found, if any, before contin-
uing to the following action in the current flow entry. Arguments can customize the search:

• If port is given as an OpenFlow port number or name, then it specifies a value to use for
the input port metadata field as part of the search, in place of the input port currently in
the flow. Specifying in_port asport is equivalent to omitting it.

• If table is given as an integer between 0 and 254 or a table name, it specifies the Open-
Flow table to search. If it is not specified, the table from the current flow is used.

• If ct is specified, then the search is done with packet 5-tuple fields swapped with the cor-
responding conntrack original direction tuple fields. See the documentation forct above,
for more information about connection tracking, orovs−fields(7) for details about the
connection tracking fields.

This flag requires a valid connection tracking state as a match prerequisite in the flow
where this action is placed. Examples of valid connection tracking state matches include
ct_state=+new, ct_state=+est, ct_state=+rel, andct_state=+trk−inv.

The changes, if any, to the input port and connection tracking fields are just for searching the flow table.
The changes are not visible to actions or to later flow table lookups.

The most common use ofresubmit is to visit another flow table withoutport or ct, like this: resubmit(,ta-
ble).

Recursive resubmit actions are permitted.

Conformance:

The resubmit action is an Open vSwitch extension. However, thegoto_table instruction in OpenFlow 1.1
and later can be viewed as a kind of restrictedresubmit.

Open vSwitch 1.2.90 addedtable. Open vSwitch 2.7 addedct.

Open vSwitch imposes a limit onresubmit recursion that varies among version:

• Open vSwitch 1.0.1 and earlier did not support recursion.

• Open vSwitch 1.0.2 and 1.0.3 limited recursion to 8 levels.

• Open vSwitch 1.1 and 1.2 limited recursion to 16 levels.

• Open vSwitch 1.2 through 1.8 limited recursion to 32 levels.

• Open vSwitch 1.9 through 2.0 limited recursion to 64 levels.

• Open vSwitch 2.1 through 2.5 limited recursion to 64 levels and impose a total limit of
4,096 resubmits per flow translation (earlier versions did not impose any total limit).

• Open vSwitch 2.6 and later imposes the same limits as 2.5, with one exception: resubmit
from tablex to any tabley > x does not count against the recursion depth limit.

The clone action
Syntax:

clone(action...)

Executes each nestedaction, saving much of the packet and pipeline state beforehand and then restoring it
afterward. The state that is saved and restored includes all flow data and metadata (including, for example,
in_port andct_state), the stack accessed bypushandpop actions, and the OpenFlow action set.

This action was added in Open vSwitch 2.6.90.

Open vSwitch 2.10.90 24

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

The push and pop actions
Syntax:

push:src
pop:dst

Thepush action pushessrc on a general-purpose stack. Thepop action pops an entry off the stack intodst.
src anddstshould be fields or subfields in the syntax described under ‘‘Field Specifications’’ above.

Controllers can use the stack for saving and restoring data or metadata aroundresubmit actions, for swap-
ping or rearranging data and metadata, or for other purposes. Any data or metadata field, or part of one,
may be pushed, and any modifiable field or subfield may be popped.

The number of bits pushed in a stack entry do not have to match the number of bits later popped from that
entry. If more bits are popped from an entry than were pushed, then the entry is conceptually left-padded
with 0-bits as needed. If fewer bits are popped than pushed, then bits are conceptually trimmed from the left
side of the entry.

The stack’s size is limited. The limit is intended to be high enough that ‘‘normal’’ use will not pose prob-
lems. Stack overflow or underflow is an error that stops action execution (see ‘‘Stack too deep’’ under
‘‘ Error Handling’’, above).

Examples:

• push:reg2[0..5]or push:NXM_NX_REG2[0..5] pushes on the stack the 6 bits in register
2 bits 0 through 5.

• pop:reg2[0..5] or pop:NXM_NX_REG2[0..5] pops the value from top of the stack and
copy bits 0 through 5 of that value into bits 0 through 5 of register 2.

Conformance:

Open vSwitch 1.2 introducedpushandpop as OpenFlow extension actions.

The exit action
Syntax:

exit

This action causes Open vSwitch to immediately halt execution of further actions. Actions which have
already been executed are unaffected. Any further actions, including those which may be in other tables, or
different levels of theresubmit call stack, are ignored. However, an exit action within a group bucket ter-
minates only execution of that bucket, not other buckets or the overall pipeline. Actions in the action set are
still executed (specifyclear_actionsbeforeexit to discard them).

The multipath action
Syntax:

multipath(fields, basis, algorithm, n_links, arg, dst)

Hashesfieldsusingbasisas a universal hash parameter, then the applies multipath link selectionalgorithm
(with parameterarg) to choose one ofn_linksoutput links numbered 0 throughn_linksminus 1, and stores
the link into dst, which must be a field or subfield in the syntax described under ‘‘Field Specifications’’
above.

Thebundle or bundle_loadactions are usually easier to use thanmultipath .

fieldsmust be one of the following:

eth_src Hashes Ethernet source address only.

symmetric_l4
Hashes Ethernet source, destination, and type, VLAN ID, IPv4/IPv6 source, destination,
and protoâ col, and TCP or SCTP (but not UDP) ports. The hash is computed so that
pairs of corresponding flows in each direction hash to the same value, in environments
where L2 paths are the same in each direction. UDP ports are not included in the hash to
support protocols such as VXLAN that use asymâ metric ports in each direction.

Open vSwitch 2.10.90 25

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

symmetric_l3l4
Hashes IPv4/IPv6 source, destination, and protocol, and TCP or SCTP (but not UDP)
ports. Like symmetric_l4, this is a symmetric hash, but by excluding L2 headers it is
more effective in environments with asymmetric L2 paths (e.g. paths involving VRRP IP
addresses on a router). Not an effective hash function for protocols other than IPv4 and
IPv6, which hash to a constant zero.

symmetric_l3l4+udp
Like symmetric_l3l4+udp, but UDP ports are included in the hash. This is a more effec-
tive hash when asymmetric UDP protocols such as VXLAN are not a consideration.

symmetric_l3
Hashes network source address and network destination address.

nw_src Hashes network source address only.

nw_dst Hashes network destination address only.

Thealgorithmused to compute the final resultlink must be one of the following:

modulo_n
Computeslink = hash(flow) % n_links.

This algorithm redistributes all traffic whenn_linkschanges. It hasO(1)performance.

Use 65535 formax_linkto get a raw hash value.

This algorithm is specified by RFC 2992.

hash_threshold
Computeslink = hash(flow) / (MAX_HASH / n_links).

Redistributes between one-quarter and one-half of traffic when n_links changes. It has
O(1)performance.

This algorithm is specified by RFC 2992.

hrw (Highest Random Weight)
Computes the following:

for i in [0,n_links]:
weights[i] = hash(flow, i)

link = { i such thatweights[i] >= weights[j] for all j != i }

Redistributes 1/n_linksof traffic whenn_linkschanges. It hasO(n_links)performance. If
n_links is greater than a threshold (currently 64, but subject to change), Open vSwitch
will substitute another algorithm automatically.

This algorithm is specified by RFC 2992.

iter_hash (Iterative Hash)
Computes the following:

i = 0
repeat:

i = i + 1
link = hash(flow, i) % arg

while link > max_link

Redistributes 1/n_links of traffic when n_links changes. O(1) performance when
arg/max_linkis bounded by a constant.

Redistributes all traffic whenarg changes.

Open vSwitch 2.10.90 26

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

arg must be greater thanmax_link and for best performance should be no more than
approximatelymax_link* 2. If arg is outside the acceptable range, Open vSwitch will
automatically substitute the least power of 2 greater thanmax_link.

This algorithm is specific to Open vSwitch.

Only theiter_hashalgorithm usesarg.

It is an error ifmax_linkis greater than or equal to 2**n_bits.

Conformance:

This is an OpenFlow extension added in Open vSwitch 1.1.

Open vSwitch 2.10.90 27

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

OTHER ACTIONS
The conjunction action

Syntax:
conjunction(id, k/n)

This action allows for sophisticated ‘‘conjunctive match’’ fl ows. Refer to ‘‘Conjunctive Match Fields’’ i n
ovs−fields(7) for details.

A flow that has one or moreconjunction actions may not have any other actions except fornoteactions.

Conformance:

Open vSwitch 2.4 introduced theconjunction action andconj_id field. They are Open vSwitch extensions
to OpenFlow.

The note action
Syntax:

note:[hh]...

This action does nothing at all. OpenFlow controllers may use it to annotate flows with more data than can
fit in a flow cookie.

The action may include any number of bytes represented as hex digits hh. Periods may separate pairs of hex
digits, for readability. Thenote action’s format doesn’t include an exact length for its payload, so the pro-
vided bytes will be padded on the right by enough bytes with value 0 to make the total number 6 more than
a multiple of 8.

Conformance:

This action is an extension to OpenFlow introduced in Open vSwitch 1.1.

The sample action
Syntax:

sample(argument...)

Samples packets and sends one sample for every sampled packet.

The followingargumentforms are accepted:

probability= packets
The number of sampled packets out of 65535. Must be greater or equal to 1.

collector_set_id=id
The unsigned 32-bit integer identifier of the set of sample collectors to send sampled
packets to. Defaults to 0.

obs_domain_id=id
When sending samples to IPFIX collectors, the unsigned 32-bit integer Observation
Domain ID sent in every IPFIX flow record. Defaults to 0.

obs_point_id=id
When sending samples to IPFIX collectors, the unsigned 32-bit integer Observation Point
ID sent in every IPFIX flow record. Defaults to 0.

sampling_port=port
Sample packets onport, which should be the ingress or egress port. This option, which
was added in Open vSwitch 2.5.90, allows the IPFIX implementation to export egress
tunnel information.

ingress
egress Specifies explicitly that the packet is being sampled on ingress to or egress from the

switch. IPFIX reports sent by Open vSwitch before version 2.5.90 did not include a direc-
tion. From 2.5.90 until 2.6.90, IPFIX reports inferred a direction fromsampling_port: if i t
was the packet’s output port, then the direction was reported as egress, otherwise as
ingress. Open vSwitch 2.6.90 introduced these options, which allow the inferred direction

Open vSwitch 2.10.90 28

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

to be overridden. This is particularly useful when the ingress (or egress) port is not a tun-
nel.

Refer toovs−vswitchd.conf.db(5) for more details on configuring sample collector sets.

Conformance:

This action is an OpenFlow extension added in Open vSwitch 2.4.

Open vSwitch 2.10.90 29

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

INSTRUCTIONS
Every version of OpenFlow includes actions. OpenFlow 1.1 introduced the higher-level, related concept of
instructions. In OpenFlow 1.1 and later, actions within a flow are always encapsulated within an instruction.
Each flow has at most one instruction of each kind, which are executed in the following fixed order defined
in the OpenFlow specification:

1. Meter

2. Apply−Actions

3. Clear−Actions

4. Write−Actions

5. Write−Metadata

6. Stat−Trigger (not supported by Open vSwitch)

7. Goto−Table

The most important instruction isApply−Actions. This instruction encapsulates any number of actions,
which the instruction executes. Open vSwitch does not explicitly representApply−Actions. Instead, any
action by itself is implicitly part of anApply−Actions instructions.

Open vSwitch syntax requires other instructions, if present, to be in the order listed above. Otherwise it will
flag an error.

The meter action and instruction
Syntax:

meter:meter_id

Apply metermeter_id. If a meter band rate is exceeded, the packet may be dropped, or modified, depending
on the meter band type.

Conformance:

OpenFlow 1.3 introduced themeter instruction. OpenFlow 1.5 changesmeter from an instruction to an
action.

Open vSwitch 2.0 introduced OpenFlow protocol support for meters, but it did not include a datapath
implementation. Open vSwitch 2.7 added meter support to the userspace datapath. Open vSwitch 2.10
added meter support to the kernel datapath.

The clear_actions instruction
Syntax:

clear_actions

Clears the action set. See ‘‘A ction Sets’’, above, for more information.

Conformance:

OpenFlow 1.1 introducedclear_actions. Open vSwitch 2.1 added support forclear_actions.

The write_actions instruction
Syntax:

write_actions(action...)

Adds eachaction to the action set. The action set is carried between flow tables and then executed at the
end of the pipeline. Only certain actions may be written to the action set. See ‘‘A ction Sets’’, above, for
more information.

Conformance:

OpenFlow 1.1 introducedwrite_actions. Open vSwitch 2.1 added support forwrite_actions.

The write_metadata instruction

Open vSwitch 2.10.90 30

ovs−actions(7) OpenvSwitch Manual ovs−actions(7)

Syntax:
write_metadata:value[/mask]

Updates the flow’s metadatafield. If maskis omitted,metadata is set exactly tovalue; if maskis specified,
then a 1-bit inmaskindicates that the corresponding bit inmetadatawill be replaced with the correspond-
ing bit from value. Both valueandmaskare 64-bit values that are decimal by default; use a0x prefix to
specify them in hexadecimal.

The metadata field can also be matched in the flow table and updated with actions such asset_fieldand
move.

Conformance:

OpenFlow 1.1 introducedwrite_metadata. Open vSwitch 2.1 added support forwrite_metadata.

The goto_table instruction
Syntax:

goto_table:table

Jumps totableas the next table in the process pipeline. The table may be a number between 0 and 254 or a
table name.

It is an error iftable is less than or equal to the table of the flow that contains it; that is,goto_tablemust
move forward in the OpenFlow pipeline. Sincegoto_tablemust be the last instruction in a flow, it nev er
leads to recursion. Theresubmit extension action is more flexible.

Conformance:

OpenFlow 1.1 introducedgoto_table. Open vSwitch 2.1 added support forgoto_table.

Open vSwitch 2.10.90 31

