Statistical Distribution Functions
PSPP can calculate several functions of standard statistical distributions. These functions are named systematically based on the function and the distribution. The table below describes the statistical distribution functions in general:
-
PDF.DIST(X[, PARAM...])
Probability density function forDIST. The domain ofXdepends onDIST. For continuous distributions, the result is the density of the probability function at X, and the range is nonnegative real numbers. For discrete distributions, the result is the probability ofX. -
CDF.DIST(X[, PARAM...])
Cumulative distribution function forDIST, that is, the probability that a random variate drawn from the distribution is less thanX. The domain ofXdependsDIST. The result is a probability. -
SIG.DIST(X[, PARAM...)
Tail probability function forDIST, that is, the probability that a random variate drawn from the distribution is greater thanX. The domain ofXdependsDIST. The result is a probability. Only a few distributions include anSIGfunction. -
IDF.DIST(P[, PARAM...])
Inverse distribution function forDIST, the value ofXfor which the CDF would yield P. The value of P is a probability. The range depends onDISTand is identical to the domain for the corresponding CDF. -
RV.DIST([PARAM...])
Random variate function forDIST. The range depends on the distribution. -
NPDF.DIST(X[, PARAM...])
Noncentral probability density function. The result is the density of the given noncentral distribution atX. The domain ofXdepends onDIST. The range is nonnegative real numbers. Only a few distributions include anNPDFfunction. -
NCDF.DIST(X[, PARAM...])
Noncentral cumulative distribution function forDIST, that is, the probability that a random variate drawn from the given noncentral distribution is less thanX. The domain ofXdependsDIST. The result is a probability. Only a few distributions include an NCDF function.
Continuous Distributions
The following continuous distributions are available:
-
PDF.BETA(X)
CDF.BETA(X, A, B)
IDF.BETA(P, A, B)
RV.BETA(A, B)
NPDF.BETA(X, A, B, )
NCDF.BETA(X, A, B, )
Beta distribution with shape parametersAandB. The noncentral distribution takes an additional parameter . Constraints:A > 0, B > 0, >= 0, 0 <= X <= 1, 0 <= P <= 1. -
PDF.BVNOR(X0, X1, ρ)
CDF.BVNOR(X0, X1, ρ)
Bivariate normal distribution of two standard normal variables with correlation coefficient ρ. Two variates X0 and X1 must be provided. Constraints: 0 <= ρ <= 1, 0 <= P <= 1. -
PDF.CAUCHY(X, A, B)
CDF.CAUCHY(X, A, B)
IDF.CAUCHY(P, A, B)
RV.CAUCHY(A, B)
Cauchy distribution with location parameterAand scale parameterB. Constraints: B > 0, 0 < P < 1. -
CDF.CHISQ(X, DF)
SIG.CHISQ(X, DF)
IDF.CHISQ(P, DF)
RV.CHISQ(DF)
NCDF.CHISQ(X, DF, )
Chi-squared distribution with DF degrees of freedom. The noncentral distribution takes an additional parameter . Constraints: DF > 0, > 0, X >= 0, 0 <= P < 1. -
PDF.EXP(X, A)
CDF.EXP(X, A)
IDF.EXP(P, A)
RV.EXP(A)
Exponential distribution with scale parameterA. The inverse ofArepresents the rate of decay. Constraints: A > 0, X >= 0, 0 <= P < 1. -
PDF.XPOWER(X, A, B)
RV.XPOWER(A, B)
Exponential power distribution with positive scale parameterAand nonnegative power parameterB. Constraints: A > 0, B >= 0, X >= 0, 0 <= P <= 1. This distribution is a PSPP extension. -
PDF.F(X, DF1, DF2)
CDF.F(X, DF1, DF2)
SIG.F(X, DF1, DF2)
IDF.F(P, DF1, DF2)
RV.F(DF1, DF2)
F-distribution of two chi-squared deviates with DF1 and DF2 degrees of freedom. The noncentral distribution takes an additional parameter . Constraints: DF1 > 0, DF2 > 0, >= 0, X >= 0, 0 <= P < 1. -
PDF.GAMMA(X, A, B)
CDF.GAMMA(X, A, B)
IDF.GAMMA(P, A, B)
RV.GAMMA(A, B)
Gamma distribution with shape parameterAand scale parameterB. Constraints: A > 0, B > 0, X >= 0, 0 <= P < 1. -
PDF.LANDAU(X)
RV.LANDAU()
Landau distribution. -
PDF.LAPLACE(X, A, B)
CDF.LAPLACE(X, A, B)
IDF.LAPLACE(P, A, B)
RV.LAPLACE(A, B)
Laplace distribution with location parameterAand scale parameterB. Constraints: B > 0, 0 < P < 1. -
RV.LEVY(C, ɑ)
Levy symmetric alpha-stable distribution with scale C and exponent ɑ. Constraints: 0 < ɑ <= 2. -
RV.LVSKEW(C, ɑ, β)
Levy skew alpha-stable distribution with scale C, exponent ɑ, and skewness parameter β. Constraints: 0 < ɑ <= 2, -1 <= β <= 1. -
PDF.LOGISTIC(X, A, B)
CDF.LOGISTIC(X, A, B)
IDF.LOGISTIC(P, A, B)
RV.LOGISTIC(A, B)
Logistic distribution with location parameterAand scale parameterB. Constraints: B > 0, 0 < P < 1. -
PDF.LNORMAL(X, A, B)
CDF.LNORMAL(X, A, B)
IDF.LNORMAL(P, A, B)
RV.LNORMAL(A, B)
Lognormal distribution with parametersAandB. Constraints: A > 0, B > 0, X >= 0, 0 <= P < 1. -
PDF.NORMAL(X, μ, σ)
CDF.NORMAL(X, μ, σ)
IDF.NORMAL(P, μ, σ)
RV.NORMAL(μ, σ)
Normal distribution with mean μ and standard deviation σ. Constraints: B > 0, 0 < P < 1. Three additional functions are available as shorthand:-
CDFNORM(X)
Equivalent toCDF.NORMAL(X, 0, 1). -
PROBIT(P)
Equivalent toIDF.NORMAL(P, 0, 1). -
NORMAL(σ)
Equivalent toRV.NORMAL(0, σ).
-
-
PDF.NTAIL(X, A, σ)
RV.NTAIL(A, σ)
Normal tail distribution with lower limitAand standard deviationσ. This distribution is a PSPP extension. Constraints: A > 0, X > A, 0 < P < 1. -
PDF.PARETO(X, A, B)
CDF.PARETO(X, A, B)
IDF.PARETO(P, A, B)
RV.PARETO(A, B)
Pareto distribution with threshold parameterAand shape parameterB. Constraints: A > 0, B > 0, X >= A, 0 <= P < 1. -
PDF.RAYLEIGH(X, σ)
CDF.RAYLEIGH(X, σ)
IDF.RAYLEIGH(P, σ)
RV.RAYLEIGH(σ)
Rayleigh distribution with scale parameter σ. This distribution is a PSPP extension. Constraints: σ > 0, X > 0. -
PDF.RTAIL(X, A, σ)
RV.RTAIL(A, σ)
Rayleigh tail distribution with lower limitAand scale parameterσ. This distribution is a PSPP extension. Constraints: A > 0, σ > 0, X > A. -
PDF.T(X, DF)
CDF.T(X, DF)
IDF.T(P, DF)
RV.T(DF)
T-distribution with DF degrees of freedom. The noncentral distribution takes an additional parameter . Constraints: DF > 0, 0 < P < 1. -
PDF.T1G(X, A, B)
CDF.T1G(X, A, B)
IDF.T1G(P, A, B)
Type-1 Gumbel distribution with parametersAandB. This distribution is a PSPP extension. Constraints: 0 < P < 1. -
PDF.T2G(X, A, B)
CDF.T2G(X, A, B)
IDF.T2G(P, A, B)
Type-2 Gumbel distribution with parametersAandB. This distribution is a PSPP extension. Constraints: X > 0, 0 < P < 1. -
PDF.UNIFORM(X, A, B)
CDF.UNIFORM(X, A, B)
IDF.UNIFORM(P, A, B)
RV.UNIFORM(A, B)
Uniform distribution with parametersAandB. Constraints: A <= X <= B, 0 <= P <= 1. An additional function is available as shorthand:UNIFORM(B)
Equivalent toRV.UNIFORM(0, B).
-
PDF.WEIBULL(X, A, B)
CDF.WEIBULL(X, A, B)
IDF.WEIBULL(P, A, B)
RV.WEIBULL(A, B)
Weibull distribution with parametersAandB. Constraints: A > 0, B > 0, X >= 0, 0 <= P < 1.
Discrete Distributions
The following discrete distributions are available:
-
PDF.BERNOULLI(X)
CDF.BERNOULLI(X, P)
RV.BERNOULLI(P)
Bernoulli distribution with probability of success P. Constraints: X = 0 or 1, 0 <= P <= 1. -
PDF.BINOM(X, N, P)
CDF.BINOM(X, N, P)
RV.BINOM(N, P)
Binomial distribution with N trials and probability of success P. Constraints: integer N > 0, 0 <= P <= 1, integer X <= N. -
PDF.GEOM(X, N, P)
CDF.GEOM(X, N, P)
RV.GEOM(N, P)
Geometric distribution with probability of success P. Constraints: 0 <= P <= 1, integer X > 0. -
PDF.HYPER(X, A, B, C)
CDF.HYPER(X, A, B, C)
RV.HYPER(A, B, C)
Hypergeometric distribution whenBobjects out ofAare drawn andCof the available objects are distinctive. Constraints: integer A > 0, integer B <= A, integer C <= A, integer X >= 0. -
PDF.LOG(X, P)
RV.LOG(P)
Logarithmic distribution with probability parameter P. Constraints: 0 <= P < 1, X >= 1. -
PDF.NEGBIN(X, N, P)
CDF.NEGBIN(X, N, P)
RV.NEGBIN(N, P)
Negative binomial distribution with number of successes parameter N and probability of success parameter P. Constraints: integer N >= 0, 0 < P <= 1, integer X >= 1. -
PDF.POISSON(X, μ)
CDF.POISSON(X, μ)
RV.POISSON(μ)
Poisson distribution with mean μ. Constraints: μ > 0, integer X >= 0.