PSPP Users’ Guide

GNU PSPP Statistical Analysis Software
Release 1.6.2-gafefc8

This manual is for GNU PSPP version 1.6.2-gafefc8, software for statistical analysis.

Copyright (© 1997, 1998, 2004, 2005, 2009, 2012, 2013, 2014, 2016, 2019, 2020 Free Software
Foundation, Inc.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation License".

Table of Contents

1 Introduction.................... 1
2 Your rights and obligations..................... 2
3 Invoking pspp......ccoviiiiiiii 3
3.1 Main Options.ttt 3
3.2 PDF, PostScript, SVG, and PNG Output Options 6
3.3 Plain Text Output Optionsc.oviiiiiiiiiiiin.n. 7
3.4 TeX Output Optionsc.ooiiiiii e 8
3.5 HTML Output Options.c.couviuiiiiiii e 8
3.6 OpenDocument Output Options ..., 9
3.7 Comma-Separated Value Output Options 9

4 Invoking psppire ... 11
4.1 The graphic user interface i 11

5 USing PSPP ... 12
5.1 Preparation of Data Files............ i L. 12
5.1.1 Defining Variables i i 13

5.1.2 Listing the data i i 13

5.1.3 Reading data from a text file 14

5.1.4 Reading data from a pre-prepared Pspp file 14

5.1.5 Saving datatoa PsSPP file............ L. 15

5.1.6 Reading data from other sources.......................... 15

5.1.7 Exiting PSPP 15

5.2 Data Screening and Transformation............................ 15
5.2.1 Identifying incorrect data.............. ..., 15

5.2.2 Dealing with suspicious data................, 16

5.2.3 Inverting negatively coded variables....................... 17

5.2.4 Testing data consistencyoooiiiiiiiiiiiiii.. 18

5.2.5 Testing for normality L 19

5.3 Hypothesis Testing ... 21
5.3.1 Testing for differences of means........................... 21

5.3.2 Linear Regression..........ccoiiiiiiiiiiiiiiiiiiii . 23

6 The pPspP language 25
6.1 TOKEIS . . oottt 25
6.2 Forming commands of tokens............. oL 26
6.3 Syntax Variants 27
6.4 Typesof Commands..........c.ooviuiiiiiiiiiiiiiiiiiiinn.. 27

6.5 Order of CommandsS.oouiiniii i 28

6.6 Handling missing observations 29

6.7 Datasets ... 29
6.7.1 Attributes of Variables............ 29
6.7.2 Variables Automatically Defined by PSPP 31
6.7.3 Lists of variable names............ 31
6.7.4 Input and Output Formats................................ 31

6.7.4.1 Basic Numeric Formats 32
6.7.4.2 Custom Currency Formats........................... 34
6.7.4.3 Legacy Numeric Formats................. 35
6.7.4.4 Binary and Hexadecimal Numeric Formats........... 36
6.7.4.5 Time and Date Formats.............................. 38
6.7.4.6 Date Component Formats............................ 40
6.7.4.7 String Formats 40
6.7.5 Scratch Variables...............o i 40

6.8 Files Used by PSPP ..ottt 41

6.9 File Handles. ... 41

6.10 Backus-Naur Formo 42

Mathematical Expressions..................... 43

7.1 Boolean Values............iiiii 43

7.2 Missing Values in Expressions ..., 43

7.3 Grouping Operators.........c...uuiiiiiiniii .. 43

7.4 Arithmetic Operators....... ...t 43

7.5 Logical Operators, 44

7.6 Relational Operatorsot 44

T.7 Functionsii i 45
7.7.1 Mathematical Functions 45
7.7.2 Miscellaneous Mathematical Functions.................... 45
7.7.3 Trigonometric Functions............... ... o i 46
7.7.4 Missing-Value Functions L. 46
7.7.5 Set-Membership Functions.............. L. 47
7.7.6 Statistical Functions........... i 47
7.7.7 String Functions......... ... i 48
7.7.8 Time & Date Functions. 50

7.7.8.1 How times & dates are defined and represented....... 50
7.7.8.2 Functions that Produce Times 50
7.7.8.3 Functions that Examine Times....................... 50
7.7.8.4 Functions that Produce Dates........................ 51
7.7.8.5 Functions that Examine Dates....................... 52
7.7.8.6 Time and Date Arithmetic........................... 53
7.7.9 Miscellaneous Functionso .. 54
7.7.10 Statistical Distribution Functions 54
7.7.10.1 Continuous Distributionsccviiiii... 55
7.7.10.2 Discrete Distributions. 59

7.8 Operator Precedencet 60

8 Data Input and Output........................ 61

8.1 BEGIN DATA . ..o 61
8.2 CLOSE FILE HANDLE e 61
8.3 DATAFILE ATTRIBUTEo 61
8.4 DATASET commandsoouuiiiiiiiteiiieeiieennn.. 62
8.5 DATA LIS .. 63
8.5.1 DATA LISTFIXEDot 63
Examples 65

852 DATALISTFREEo e 66
8.5.3 DATA LIST LIST ... 67
8.6 END CASE ... 67
8.7 END FILEo e 67
8.8 FILE HANDLEo e 67
8.9 INPUT PROGRAM. e 70
810 LIS ... 73
811 NEW FILE e 73
8.12 PRINT ... 73
8.13 PRINT EJECT ... e 74
8.14 PRINT SPACE e 75
8.15 REREAD 75
8.16 REPEATING DATA e 76
817 WRITE ..o 77
9 System and Portable File I/O................. 78
9.1 APPLY DICTIONARY ...t 78
9.2 EXPORT ... 79
0.3 GET ... 79
9.4 GET DAT A . 80
9.4.1 Spreadsheet Files...... ..o 81
9.4.2 Postgres Database Queries.............ot 81
9.4.3 Textual Data Files........ ... i 82
9.4.3.1 Reading Delimited Data 83
9.4.3.2 Reading Fixed Columnar Data....................... 85

0.5 IMPORT ... 86
0.6 SAVE ..o 86
9.7 SAVE DATA COLLECTIONottt 88
9.8 SAVE TRANSLATE e 88
9.8.1 Writing Comma- and Tab-Separated Data Files........... 89
9.9 SYSFILE INFO ... e 90
9.10 XEXPORT ...t 91
9.11 XSAVE .. 91
10 Combining Data Files........................ 92
10.1 Common SYNEAK ..o .vvent ettt 92
10.2 ADD FILES ... e 94
10.3 MATCH FILESo e 95

10.4 UPDATE ... 96

11 Manipulating Variables....................... 97

111 DISPLAY . 97
11.2 NUMERIC . .. e 98
11.3 STRING . ..o e 98
11.4 MODIFY VARS. ..o e 98
11.5 RENAME VARIABLES 99
11.6 SORT VARIABLES 99
11.7 DELETE VARIABLES. 101
11.8 VARIABLE LABELS 101
11.9 PRINT FORMATS 101
11.10 WRITE FORMATS e 101
11.11 FORMATS ... e e 102
11.12 VALUE LABELS e 102
11.13 ADD VALUE LABELS 102
11.14 MISSING VALUES e e 102
11.15 VARIABLE ATTRIBUTE ... 103
11.16 VARIABLE ALIGNMENT 104
11.17 VARIABLE WIDTH. 104
11.18 VARIABLE LEVEL ... e 104
11.19 VARIABLE ROLE..... i 105
11.20 VECTOR e 105
11.21 MRSE S . o 106
11.22 LEAVE . 107
12 Data transformations........................ 108
121 AGGREGATEo 108
12.1.1 Aggregate Example........ ... 111
12.2 AUTORECODE ... e 112
12.2.1 Autorecode Example ..., 112
12.3 COMPUTE. e 115
12.3.1 Compute Examples. ..., 116
12.4 COUNT ... e 117
12.4.1 Count Examples. ... 118
125 FLIP .o 120
12.5.1 Flip Examples. ... 121
12,6 TF oo 122
127 RECODE e 123
12.8 SORT CASES. . e 125
12.8.1 Sorting Example i 126
13 Selecting data for analysis.................. 130
13.1 FILTER ..o e 130
13.2 N OF CASES ... 130
13.3 SAMPLE 131
134 SELECT IF ... e 131
13.4.1 Example Select-If. i 131

13.5 SPLIT FILE ... e 132

13.5.1 Example Split.........oo 133

13.6 TEMPORARY ... e 135
13.6.1 Example Temporary...........oouuiiiiiiiiieinnnn. 135
13.7 WEIGHT ... e 136
13.7.1 Example Weights. ... 136
14 Conditional and Looping Constructs....... 138
14.1 BREAK ... 138
14.2 DEFINE ... o 138
14.2. 1 OVEIVIEW . o oottt e e e 138
14.2.2 Introduction..............cciiiiiiiiiiiiiiiiiienenn.. 139
14.2.3 Macro Bodies ... 140
14.2.4 Macro Arguments ..ot 140
14.2.5 Controlling Macro Expansion........................... 143
14.2.6 Macro Functions ..., 143
14.2.7 Macro EXpressionscooviiiiiiiiiiiiiiiiii.., 146
14.2.8 Macro Conditional Expansion, 147
14.2.9 Macro Loops 147
14.2.10 Macro Variable Assignment.............. 148
14.2.11 Macro Settingsovvee e 148
14.2.12 Additional Notes. ..., 148
14.2.12.1 Calling Macros from Macros...................... 148
14.2.12.2 Command Terminators........................... 149
14.2.12.3 Expansion Contextsooveiiiinaan... 149
14.2.12.4 PRESERVE and RESTORE...................... 149

14.3 DO IF oo 149
144 DO REPEAT 150
14.5 LOOP .. 151
15 Statistics..........l 152
15.1 DESCRIPTIVES. ... e 152
15.1.1 Descriptives Example......... ... 153
15.2 FREQUENCIES e 155
15.2.1 Frequencies Example it 157
15.3 EXAMINE 158
15.4 GRAPH ... 161
15.4.1 Scatterplot ... 161
15.4.2 HiStogram..........coeeiiiininiii i 161
15.4.3 Bar Chart..........iiiiii 161
15.5 CORRELATIONS ... e 162
15.6 CROSSTABS ... e 163
15.6.1 Crosstabs Example 166
15.7 FACTOR ... e 169
15.8 GLM .. 171
15.9 LOGISTIC REGRESSIONo 172
15.10 MEANS .« 173

15.10.1 Example Means, 174

15.11 NPAR TESTS ... e 176
15.11.1 Binomial test............ .. i 176
15.11.2 Chi-square Testot 177

15.11.2.1 Chi-square Example........... ool 177
15.11.3 Cochran Q Test ... 178
15.11.4 Friedman Test. 179
15.11.5 Kendalll's W Test. ... 179
15.11.6 Kolmogorov-Smirnov Test 179
15.11.7 Kruskal-Wallis Test ..., 180
15.11.8 Mann-Whitney U Test, 180
15.11.9 McNemar Test ... 180
15.11.10 Median Test 180
15.11.11 Runs Test. ... e 181
15.11.12 Sign Test .o .vvee i 181
15.11.13 Wilcoxon Matched Pairs Signed Ranks Test 181

15.12 T-TEST .o 181

15.12.1 One Sample Mode....... ..., 182

15.12.1.1 Example - One Sample T-test 182
15.12.2 Independent Samples Mode............ ...t 184
15.12.2.1 Example - Independent Samples T-test 184
15.12.3 Paired Samples Mode ... 188

15.13 ONEWAY ... 188

15.14 QUICK CLUSTER 189

1505 RANK ..o 190

15.16 REGRESSION e 191
15.16.1 SyMEax ..ottt et e 191
15.16.2 Examplesoooiii e 192

15.17 RELIABILITY . ..o e 193
15.17.1 Example - Reliability............... ... oo 193

1518 ROC . . 195

16 Matrices......... ... 197

16.1 Matrix Files. ... 197

16.2 MATRIX DATA ..o e 198
16.2.1 With ROWTYPE ...t 199
16.2.2 Without ROWTYPE _ttt 202

16.2.2.1 Factor variables without ROWTYPE_................. 204

16.3 MCONVERT ... e 205

16.4 MATRIX ..o 206
16.4.1 Matrix Expressions...........coeeiiiiiiiiiiiiiiii... 208

16.4.1.1 Matrix Construction Operator {}.................. 208

16.4.1.2 Integer Sequence Operator “:’...................... 209

16.4.1.3 Index Operator ()ooieiiiiiiieeiiinannn.. 209

16.4.1.4 Unary Operatorscouiiiieeniieennnn... 210

16.4.1.5 Elementwise Binary Operators..................... 210

16.4.1.6 Matrix Multiplication Operator ‘*’................. 211

16.4.1.7 Matrix Exponentiation Operator **................ 211

16.4.2 Matrix Functions. ... 212

vi

16.4.2.1 Elementwise Functions............................. 212
16.4.2.2 Logical Functions.............. oL 213
16.4.2.3 Matrix Construction Functions 214
16.4.2.4 Minimum, Maximum, and Sum Functions.......... 216
16.4.2.5 Matrix Property Functions......................... 217
16.4.2.6 Matrix Rank Ordering Functions................... 217
16.4.2.7 Matrix Algebra Functions.......................... 217
16.4.2.8 Matrix Statistical Distribution Functions........... 220
16.4.2.9 EOF Function..............oiiiiiiiiniiiina.. 220
16.4.3 The COMPUTE Commandcovirunieeinineenon.. 221
16.4.4 The CALL Command..........couuniiiininiiinnnennnn.. 221
16.4.5 The PRINT Commandccoviiiiniiiinnnennnn.. 222
16.4.6 The DO IF Command............oouuuiiiiinnininnoi.. 224
16.4.7 The LOOP and BREAK Commands........................ 224
16.4.7.1 The BREAK Command...................cccoionn... 225
16.4.8 The READ and WRITE Commands.............ccovunven... 226
16.4.8.1 The READ Command..............ccooiiiiiinneoon.. 227
16.4.8.2 The WRITE Command...............civiiinnn... 228
16.4.9 The GET Commandcoiiiiiiiiineinna.. 229
16.4.10 The SAVE Command..............coiiiiiiineiinna. . 230
16.4.11 The MGET Commandouiiuniiiiininnnn. 231
16.4.12 The MSAVE Commandouuiiiiiiniinnn... 232
16.4.13 The DISPLAY Commandcovviiieiinnn... 232
16.4.14 The RELEASE Commandcooiiieiinnn... 233
17 Utilities. 234
17.1 ADD DOCUMENT i 234
17.2 CACHE. ... o 234
17.3 O 234
17.4 COMMENT ... 234
17.5 DOCUMENT ... 235
17.6 DISPLAY DOCUMENTS ... 235
17.7 DISPLAY FILE LABEL ... 235
17.8 DROP DOCUMENTS e 235
17.9 ECHO ... o 235
1710 ERASE ... oo 235
17.11 EXECUTE ... 236
17.12 FILE LABEL e 236
17.13 FINISH. ... 236
17.14 HOST ..o 236
17.15 INCLUDE e 237
1716 INSERT ... e 237
17.17 OUTPU T . .. e 238
17.18 PERMISSIONS . ..o 239
17.19 PRESERVE and RESTORE 239
17.20 SET ... 239
1721 SHOW .o 247
17.22 SUBTITLE e 248

vii

17.23 TITLE. ... e 248
18 Invoking pspp-convert....................... 249
19 Invoking pspp-output........................ 252

19.1 The detect Commandoviuiieiiiiinennienennn.. 252

19.2 The dir Command...........ouuuiiiiie i 252

19.3 The convert Commandcoviiiiiiiiiieannne... 252

19.4 The get-table-look Command................c.oovvuei.... 253

19.5 The convert-table-look Command........................ 253

19.6 Input Selection Optionscooiiiiii ... 253
20 Invoking pspp-dump-sav...................... 256
21 Not Implemented............................ 257
22 Bugs........ 261

22.1 How toreport bugsccoviiiiiiiii i 261
23 Function Index............. 264
24 Command Index............................. 267
25 ConceptIndex............................... 270

Appendix A GNU Free Documentation License .. 276

viii

1 Introduction

PSPP is a tool for statistical analysis of sampled data. It reads the data, analyzes the data
according to commands provided, and writes the results to a listing file, to the standard
output or to a window of the graphical display.

The language accepted by PSPP is similar to those accepted by SPSS statistical products.
The details of PsSPP’s language are given later in this manual.

PSPP produces tables and charts as output, which it can produce in several formats;
currently, ASCII, PostScript, PDF, HTML, DocBook and TEX are supported.

The current version of PspP, 1.6.2-gafefc8, is incomplete in terms of its statistical pro-
cedure support. PSPP is a work in progress. The authors hope to fully support all features
in the products that PSPP replaces, eventually. The authors welcome questions, comments,
donations, and code submissions. See Chapter 22 [Submitting Bug Reports|, page 261, for
instructions on contacting the authors.

2 Your rights and obligations

PSPP is not in the public domain. It is copyrighted and there are restrictions on its distri-
bution, but these restrictions are designed to permit everything that a good cooperating
citizen would want to do. What is not allowed is to try to prevent others from further
sharing any version of this program that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of PSPP,
that you receive source code or else can get it if you want it, that you can change these
programs or use pieces of them in new free programs, and that you know you can do these
things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else
of these rights. For example, if you distribute copies of PSPP, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the
source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for pspp. If these programs are modified by someone else and passed on, we
want their recipients to know that what they have is not what we distributed, so that any
problems introduced by others will not reflect on our reputation.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise conditions of the license for Pspp are found in the GNU General Public
License. You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301 USA. This manual specifically is covered by the GNU Free
Documentation License (see Appendix A [GNU Free Documentation License|, page 276).

3 Invoking pspp

PSPP has two separate user interfaces. This chapter describes pspp, PSPP’s command-line
driven text-based user interface. The following chapter briefly describes PSPPIRE, the
graphical user interface to PSPP.

The sections below describe the pspp program’s command-line interface.

3.1 Main Options

Here is a summary of all the options, grouped by type, followed by explanations in the same
order.

In the table, arguments to long options also apply to any corresponding short options.

Non-option arguments
syntax-file

Output options
-0, —--output=output-file
-0 option=value
-0 format=format
-0 device={terminal|listing}

—-—no-output

--table-look=file

-e, ——error-file=error-file
Language options

-I, —--include=dir

-I-, —--no-include

-b, —--batch

-i, —-—-interactive

-r, --no-statrc

-a, --algorithm={compatible|enhanced}

-x, —--syntax={compatible|enhanced}

--syntax-encoding=encoding

Informational options

-h, --help

-V, —--version
Other options

-s, ——safer

--testing-mode

syntax-file Read and execute the named syntax file. If no syntax files are specified, PSPp
prompts for commands. If any syntax files are specified, PSPP by default exits
after it runs them, but you may make it prompt for commands by specifying
‘=" as an additional syntax file.

-0 output-file
Write output to output-file. PSPP has several different output drivers that
support output in various formats (use --help to list the available formats).

Chapter 3: Invoking pspp 4

Specify this option more than once to produce multiple output files, presumably
in different formats.

Use ‘-’ as output-file to write output to standard output.

If no -o option is used, then PSPP writes text and CSV output to standard
output and other kinds of output to whose name is based on the format, e.g.
pspp-pdf for PDF output.

-0 option=value
Sets an option for the output file configured by a preceding -o. Most options
are specific to particular output formats. A few options that apply generically
are listed below.

-0 format=format
PSPP uses the extension of the file name given on -o to select an output format.
Use this option to override this choice by specifying an alternate format, e.g.
-0 pspp.out -0 format=html to write HI'ML to a file named pspp.out. Use
—--help to list the available formats.

-0 device={terminal|listing}
Sets whether PSPP considers the output device configured by the preceding -o
to be a terminal or a listing device. This affects what output will be sent to
the device, as configured by the SET command’s output routing subcommands
(see Section 17.20 [SET], page 239). By default, output written to standard
output is considered a terminal device and other output is considered a listing
device.

--no-output
Disables output entirely, if neither —o nor -0 is also used. If one of those options
is used, ——no-output has no effect.

-—table-look=file
Reads a table style from file and applies it to all PSPP table output. The file
should be a TableLook .stt or .tlo file. PSPP searches for file in the current
directory, then in .pspp/looks in the user’s home directory, then in a looks
subdirectory inside PSPP’s data directory (usually /usr/local/share/pspp). If
PSPP cannot find file under the given name, it also tries adding a .stt extension.

When this option is not specified, PSPP looks for default.stt using the algo-
rithm above, and otherwise it falls back to a default built-in style.

Using SET TLOOK in PSPP syntax overrides the style set on the command line
(see Section 17.20 [SET], page 239).

-e error-file

-—error—-file=error-file
Configures a file to receive PSPP error, warning, and note messages in plain
text format. Use ‘=’ as error-file to write messages to standard output. The
default error file is standard output in the absence of these options, but this is
suppressed if an output device writes to standard output (or another terminal),
to avoid printing every message twice. Use ‘none’ as error-file to explicitly
suppress the default.

Chapter 3: Invoking pspp)

-Idir

--include=dir
Appends dir to the set of directories searched by the INCLUDE (see Section 17.15
[INCLUDE], page 237) and INSERT (see Section 17.16 [INSERT], page 237)
commands.

I

—--no-include
Clears all directories from the include path, including directories inserted in
the include path by default. The default include path is . (the current direc-
tory), followed by .pspp in the user’s home directory, followed by PSPP’s system
configuration directory (usually /etc/pspp or /usr/local/etc/pspp).

-b

--batch

-i

-—interactive
These options forces syntax files to be interpreted in batch mode or interac-
tive mode, respectively, rather than the default “auto” mode. See Section 6.3
[Syntax Variants|, page 27, for a description of the differences.

-r

--no-statrc
By default, at startup PSPP searches for a file named rc in the include path
(described above) and, if it finds one, runs the commands in it. This option
disables this behavior.

-a {enhanced|compatible}

—--algorithm={enhanced|compatible}
With enhanced, the default, PSPP uses the best implemented algorithms for
statistical procedures. With compatible, however, PsPP will in some cases
use inferior algorithms to produce the same results as the proprietary program
SPSS.

Some commands have subcommands that override this setting on a per com-
mand basis.

-x {enhanced|compatible}

--syntax={enhanced|compatible}
With enhanced, the default, PSPP accepts its own extensions beyond those
compatible with the proprietary program SPSS. With compatible, PSPP rejects
syntax that uses these extensions.

--syntax-encoding=encoding
Specifies encoding as the encoding for syntax files named on the command
line. The encoding also becomes the default encoding for other syntax files
read during the PSPP session by the INCLUDE and INSERT commands. See
Section 17.16 [INSERT], page 237, for the accepted forms of encoding.

--help Prints a message describing PSPP command-line syntax and the available device
formats, then exits.

Chapter 3: Invoking pspp 6

-V

--version
Prints a brief message listing PSPP’s version, warranties you don’t have, copying
conditions and copyright, and e-mail address for bug reports, then exits.

-s
--safer Disables certain unsafe operations. This includes the ERASE and HOST com-
mands, as well as use of pipes as input and output files.

--testing-mode
Invoke heuristics to assist with testing PSPP. For use by make check and similar
scripts.

3.2 PDF, PostScript, SVG, and PNG Output Options

To produce output in PDF, PostScript, SVG, or PNG format, specify -o file on the
pspp command line, optionally followed by any of the options shown in the table below to
customize the output format.

PDF, PostScript, and SVG use real units: each dimension among the options listed
below may have a suffix ‘mm’ for millimeters, ‘in’ for inches, or ‘pt’ for points. Lacking a
suffix, numbers below 50 are assumed to be in inches and those about 50 are assumed to
be in millimeters.

PNG files are pixel-based, so dimensions in PNG output must ultimately be measured
in pixels. For output to these files, PSPP translates the specified dimensions to pixels at
72 pixels per inch. For PNG output only, fonts are by default rendered larger than this, at
96 pixels per inch.

An SVG or PNG file can only hold a single page. When PSPP outputs more than one
page to SVG or PNG, it creates multiple files. It outputs the second page to a file named
with a -2 suffix, the third with a -3 suffix, and so on.

-0 format={pdf |ps|svg|png}
Specify the output format. This is only necessary if the file name given on -o
does not end in .pdf, .ps, .svg, or .png.

-0 paper-size=paper-size
Paper size, as a name (e.g. a4, letter) or measurements (e.g. 210x297,
8.5x11in).

The default paper size is taken from the PAPERSIZE environment variable or the
file indicated by the PAPERCONF environment variable, if either variable is set.
If not, and your system supports the LC_PAPER locale category, then the default
paper size is taken from the locale. Otherwise, if /etc/papersize exists, the
default paper size is read from it. As a last resort, A4 paper is assumed.

-0 foreground-color=color
Sets color as the default color for lines and text. Use a CSS color format (e.g.
#rrggbb) or name (e.g. black) as color.

-0 orientation=orientation
Either portrait or landscape. Default: portrait.

Chapter 3: Invoking pspp 7

-0 left-margin=dimension

-0 right-margin=dimension

-0 top-margin=dimension

-0 bottom-margin=dimension
Sets the margins around the page. See below for the allowed forms of dimension
Default: 0.5in.

-0 prop-font=font-name
Sets the default font used for ordinary text. Most systems support CSS-like
font names such as “Sans Serif”, but a wide range of system-specific fonts are
likely to be supported as well.

Default: proportional font Sans Serif.

-0 font-size=font-size
Sets the size of the default fonts, in thousandths of a point. Default: 10000 (10
point).

-0 trim=true
This option makes PSPP trim empty space around each page of output, be-
fore adding the margins. This can make the output easier to include in other
documents.

-0 outline=boolean
For PDF output only, this option controls whether PSPP includes an outline
in the output file. PDF viewers usually display the outline as a side bar that
allows for easy navigation of the file. The default is true unless -0 trim=true
is also specified. (The Cairo graphics library that PSPP uses to produce PDF
output has a bug that can cause a crash when outlines and trimming are used
together.)

-0 font-resolution=dpi
Sets the resolution for font rendering, in dots per inch. For PDF, PostScript,
and SVG output, the default is 72 dpi, so that a 10-point font is rendered with
a height of 10 points. For PNG output, the default is 96 dpi, so that a 10-point
font is rendered with a height of 10/72 % 96 = 13.3 pixels. Use a larger dpi to
enlarge text output, or a smaller dpi to shrink it.

3.3 Plain Text Output Options

PSPP can produce plain text output, drawing boxes using ASCII or Unicode line drawing
characters. To produce plain text output, specify -o file on the PSPP command line,
optionally followed by options from the table below to customize the output format.

Plain text output is encoded in UTF-8.

-0 format=txt
Specify the output format. This is only necessary if the file name given on -o
does not end in .txt or .list.

-0 charts={template.png|none}
Name for chart files included in output. The value should be a file name that
includes a single ‘#’ and ends in png. When a chart is output, the ‘#’ is replaced

Chapter 3: Invoking pspp 8

by the chart number. The default is the file name specified on -o with the
extension stripped off and replaced by —#. png.

Specify none to disable chart output.

-0 foreground-color=color

-0 background-color=color
Sets color as the color to be used for the background or foreground to be used
for charts. Color should be given in the format #RRRRGGGGBBBB, where RRRR,
GGGG and BBBB are 4 character hexadecimal representations of the red,
green and blue components respectively. If charts are disabled, this option has
no effect.

-0 width=columns
Width of a page, in columns. If unspecified or given as auto, the default is
the width of the terminal, for interactive output, or the WIDTH setting (see
Section 17.20 [SET], page 239), for output to a file.

-0 box={asciilunicode}
Sets the characters used for lines in tables. If set to ascii the characters ‘-, ‘|,
and ‘+’ for single-width lines and ‘=" and ‘#’ for double-width lines are used. If
set to unicode then Unicode box drawing characters will be used. The default
is unicode if the locale’s character encoding is "UTF-8" or ascii otherwise.

-0 emphasis={none|bold|underline}
How to emphasize text. Bold and underline emphasis are achieved with over-
striking, which may not be supported by all the software to which you might
pass the output. Default: none.

3.4 TeX Output Options

If you want to publish statistical results in professional or academic journals, you will
probably want to provide results in TEX format. To do this, specify -o file on the PSPP
command line where file is a file name ending in .tex, or you can specify -0 format=tex.

The resulting file can be directly processed using TEX or you can manually edit the file
to add commentary text. Alternatively, you can cut and paste desired sections to another

TEX file.

3.5 HTML Output Options

To produce output in HTML format, specify —o file on the PSPP command line, optionally
followed by any of the options shown in the table below to customize the output format.

-0 format=html
Specify the output format. This is only necessary if the file name given on -o
does not end in .html.

-0 charts={template.png|none}
Sets the name used for chart files. See Section 3.3 [Plain Text Output Options],
page 7, for details.

Chapter 3: Invoking pspp 9

-0 borders=boolean
Decorate the tables with borders. If set to false, the tables produced will have
no borders. The default value is true.

-0 bare=boolean
The HTML output driver ordinarily outputs a complete HTML document. If
set to true, the driver instead outputs only what would normally be the contents
of the body element. The default value is false.

-0 css=boolean
Use cascading style sheets. Cascading style sheets give an improved appearance
and can be used to produce pages which fit a certain web site’s style. The default
value is true.

3.6 OpenDocument Output Options

To produce output as an OpenDocument text (ODT) document, specify -o file on the
pspp command line. If file does not end in .odt, you must also specify -0 format=odt.

ODT support is only available if your installation of PSPP was compiled with the libxml2
library.

The OpenDocument output format does not have any configurable options.

3.7 Comma-Separated Value Output Options

To produce output in comma-separated value (CSV) format, specify -o file on the PSPP
command line, optionally followed by any of the options shown in the table below to cus-
tomize the output format.

-0 format=csv
Specify the output format. This is only necessary if the file name given on -o
does not end in .csv.

-0 separator=field-separator
Sets the character used to separate fields. Default: a comma (*,’).

-0 quote=qualifier
Sets qualifier as the character used to quote fields that contain white space,
the separator (or any of the characters in the separator, if it contains more
than one character), or the quote character itself. If qualifier is longer than one
character, only the first character is used; if qualifier is the empty string, then
fields are never quoted.

-0 titles=boolean
Whether table titles (brief descriptions) should be printed. Default: on.

-0 captions=boolean
Whether table captions (more extensive descriptions) should be printed. De-
fault: on.

The CSV format used is an extension to that specified in RFC 4180:

Chapter 3:

Tables

Titles

Captions

Footnotes

Text

Messages

Charts

Invoking pspp 10

Each table row is output on a separate line, and each column is output as a
field. The contents of a cell that spans multiple rows or columns is output only
for the top-left row and column; the rest are output as empty fields.

When a table has a title and titles are enabled, the title is output just above
the table as a single field prefixed by ‘Table:’.

When a table has a caption and captions are enabled, the caption is output
just below the table as a single field prefixed by ‘Caption:’.

Within a table, footnote markers are output as bracketed letters following the
cell’s contents, e.g. ‘[al’, ‘[b]’, ... The footnotes themselves are output fol-
lowing the body of the table, as a separate two-column table introduced with a
line that says ‘Footnotes:’. Each row in the table represent one footnote: the
first column is the marker, the second column is the text.

Text in output is printed as a field on a line by itself. The TITLE and SUBTI-
TLE produce similar output, prefixed by ‘Title:’ or ‘Subtitle:’, respectively.

Errors, warnings, and notes are printed the same way as text.

Charts are not included in CSV output.

Successive output items are separated by a blank line.

11

4 Invoking psppire

4.1 The graphic user interface

The PSPPIRE graphic user interface for PSPP can perform all functionality of the command
line interface. In addition it gives an instantaneous view of the data, variables and statistical
output.

The graphic user interface can be started by typing psppire at a command prompt.
Alternatively many systems have a system of interactive menus or buttons from which
psppire can be started by a series of mouse clicks.

Once the principles of the PSPP system are understood, the graphic user interface is
designed to be largely intuitive, and for this reason is covered only very briefly by this
manual.

12

5 Using PSPP

PSPP is a tool for the statistical analysis of sampled data. You can use it to discover patterns
in the data, to explain differences in one subset of data in terms of another subset and to
find out whether certain beliefs about the data are justified. This chapter does not attempt
to introduce the theory behind the statistical analysis, but it shows how such analysis can
be performed using PSPP.

For the purposes of this tutorial, it is assumed that you are using PSPP in its interactive
mode from the command line. However, the example commands can also be typed into a
file and executed in a post-hoc mode by typing ‘pspp file-name’ at a shell prompt, where
file-name is the name of the file containing the commands. Alternatively, from the graphical
interface, you can select File =+ New — Syntax to open a new syntax window and use the
Run menu when a syntax fragment is ready to be executed. Whichever method you choose,
the syntax is identical.

When using the interactive method, PSPP tells you that it’s waiting for your data with
a string like PSPP> or data>. In the examples of this chapter, whenever you see text like
this, it indicates the prompt displayed by PSPP, not something that you should type.

Throughout this chapter reference is made to a number of sample data files. So that
you can try the examples for yourself, you should have received these files along with your
copy of Pspp.!

Please note: Normally these files are installed in the directory
/usr/local/share/pspp/examples. If however your system administrator or
operating system vendor has chosen to install them in a different location, you
will have to adjust the examples accordingly.

5.1 Preparation of Data Files

Before analysis can commence, the data must be loaded into PSPP and arranged such that
both PsPP and humans can understand what the data represents. There are two aspects of
data:

e The variables — these are the parameters of a quantity which has been measured or
estimated in some way. For example height, weight and geographic location are all
variables.

e The observations (also called ‘cases’) of the variables — each observation represents an
instance when the variables were measured or observed.

For example, a data set which has the variables height, weight, and name, might have the
observations:

1881 89.2 Ahmed
1192 107.01 Frank
1230 67 Julie

The following sections explain how to define a dataset.

I These files contain purely fictitious data. They should not be used for research purposes.

Chapter 5: Using PSPP 13

5.1.1 Defining Variables

Variables come in two basic types, viz: numeric and string. Variables such as age, height
and satisfaction are numeric, whereas name is a string variable. String variables are best
reserved for commentary data to assist the human observer. However they can also be used
for nominal or categorical data.

The following example defines two variables forename and height, and reads data into
them by manual input:

PSPP> data list list /forename (A12) height.
PSPP> begin data.

data> Ahmed 188

data> Bertram 167

data> Catherine 134.231

data> David 109.1

data> end data

PSPP>

There are several things to note about this example.

e The words ‘data list list’ are an example of the DATA LIST command. See
Section 8.5 [DATA LIST], page 63. It tells PSPP to prepare for reading data. The
word ‘list’ intentionally appears twice. The first occurrence is part of the DATA LIST
call, whilst the second tells PSPP that the data is to be read as free format data with
one record per line.

e The ‘/’ character is important. It marks the start of the list of variables which you
wish to define.

e The text ‘forename’ is the name of the first variable, and ‘(A12)’ says that the variable
forename is a string variable and that its maximum length is 12 bytes. The second
variable’s name is specified by the text ‘height’. Since no format is given, this variable
has the default format. Normally the default format expects numeric data, which
should be entered in the locale of the operating system. Thus, the example is correct
for English locales and other locales which use a period (‘.”) as the decimal separator.
However if you are using a system with a locale which uses the comma (‘,’) as the
decimal separator, then you should in the subsequent lines substitute ‘.’ with °,’.
Alternatively, you could explicitly tell PsPP that the height variable is to be read
using a period as its decimal separator by appending the text ‘DOT8.3" after the word
‘height’. For more information on data formats, see Section 6.7.4 [Input and Output
Formats|, page 31.

e Normally, PSPP displays the prompt PSPP> whenever it’s expecting a command. How-
ever, when it’s expecting data, the prompt changes to data> so that you know to enter
data and not a command.

e At the end of every command there is a terminating ‘.’ which tells PSPP that the end
of a command has been encountered. You should not enter ‘.’ when data is expected
(¢e. when the data> prompt is current) since it is appropriate only for terminating
commands.

5.1.2 Listing the data
Once the data has been entered, you could type

Chapter 5: Using PSPP 14

PSPP> 1list /format=numbered.

to list the data. The optional text ‘/format=numbered’ requests the case numbers to be
shown along with the data. It should show the following output:

Data List
e e e +
|Case Number| forename|heightl|
e O fm———— +
I1 | Ahmed |188.00]1
|2 |Bertram |167.00]|
|13 |Catherine|134.23]|
|4 |David [109.10]
e Tt O +

Note that the numeric variable height is displayed to 2 decimal places, because the format
for that variable is ‘F8.2’. For a complete description of the LIST command, see Section 8.10
[LIST], page 73.

5.1.3 Reading data from a text file

The previous example showed how to define a set of variables and to manually enter the
data for those variables. Manual entering of data is tedious work, and often a file containing
the data will be have been previously prepared. Let us assume that you have a file called
mydata.dat containing the ascii encoded data:

Ahmed 188.00
Bertram 167.00
Catherine 134.23
David 109.10
Zachariah 113.02

You can can tell the DATA LIST command to read the data directly from this file instead of
by manual entry, with a command like:

PSPP> data list file=’mydata.dat’ list /forename (A12) height.

Notice however, that it is still necessary to specify the names of the variables and their
formats, since this information is not contained in the file. It is also possible to specify
the file’s character encoding and other parameters. For full details refer to see Section 8.5
[DATA LIST], page 63.

5.1.4 Reading data from a pre-prepared pPspP file

When working with other PSPP users, or users of other software which uses the pSpp data
format, you may be given the data in a pre-prepared PsPP file. Such files contain not only
the data, but the variable definitions, along with their formats, labels and other meta-data.
Conventionally, these files (sometimes called “system” files) have the suffix .sav, but that
is not mandatory. The following syntax loads a file called my-file.sav.

PSPP> get file="my-file.sav’.

You will encounter several instances of this in future examples.

Chapter 5: Using PSPP 15

5.1.5 Saving data to a pspp file.

If you want to save your data, along with the variable definitions so that you or other Pspp
users can use it later, you can do this with the SAVE command.

The following syntax will save the existing data and variables to a file called my-new-
file.sav.

PSPP> save outfile=’my-new-file.sav’.

If my-new-file.sav already exists, then it will be overwritten. Otherwise it will be created.

5.1.6 Reading data from other sources

Sometimes it’s useful to be able to read data from comma separated text, from spreadsheets,
databases or other sources. In these instances you should use the GET DATA command (see
Section 9.4 [GET DATA], page 80).

5.1.7 Exiting PSPP

Use the FINISH command to exit PSPP:
PSPP> finish.

5.2 Data Screening and Transformation

Once data has been entered, it is often desirable, or even necessary, to transform it in some
way before performing analysis upon it. At the very least, it’s good practice to check for
errors.

5.2.1 Identifying incorrect data

Data from real sources is rarely error free. PSPP has a number of procedures which can be
used to help identify data which might be incorrect.

The DESCRIPTIVES command (see Section 15.1 [DESCRIPTIVES], page 152) is used
to generate simple linear statistics for a dataset. It is also useful for identifying potential
problems in the data. The example file physiology.sav contains a number of physiological
measurements of a sample of healthy adults selected at random. However, the data entry
clerk made a number of mistakes when entering the data. The following example illustrates
the use of DESCRIPTIVES to screen this data and identify the erroneous values:

PSPP> get file=’/usr/local/share/pspp/examples/physiology.sav’.
PSPP> descriptives sex, weight, height.

For this example, PSPP produces the following output:
Descriptive Statistics
B oo mm Fmmmm Fmmmm ettt +
| | NI Mean |Std Dev|Minimum|Maximum|
o oo m— o o o +
|Sex of subject 40| .45] .50|Male |Female |
|Weight in kilograms [40] 72.12| 26.70| -55.6] 92.1]|
|Height in millimeters|40|1677.12| 262.87]| 1791 1903
|Valid N (listwise) 140| | | | |
|[Missing N (listwise) | Ol | | | |
e B B o o +

The most interesting column in the output is the minimum value. The weight variable
has a minimum value of less than zero, which is clearly erroneous. Similarly, the height

Chapter 5: Using PSPP 16

variable’s minimum value seems to be very low. In fact, it is more than 5 standard deviations
from the mean, and is a seemingly bizarre height for an adult person.

We can look deeper into these discrepancies by issuing an additional EXAMINE command:
PSPP> examine height, weight /statistics=extreme(3).

This command produces the following additional output (in part):

Extreme Values

B ——— ————t—————4

| |Case Number|Value]

e + ————m————t
|Height in millimeters Highest 11| 14| 1903]
| 2| 15| 1884|
| 3l 12| 1802|
I ettt e T +o——— +
| Lowest 1] 30| 179
| 2| 31| 1598
| 31 28| 16011
+-—- - ———+ ——— - +
|Weight in kilograms Highest 1| 13| 92.1]
| 2| 5] 92.1]
[3] 171 91.7]
| —————+ e
| Lowest 1| 38|-55.61
| 2| 39| 54.5|
| 3l 33| 55.4]|
+-—- ———— o +-———— +

From this new output, you can see that the lowest value of height is 179 (which we suspect
to be erroneous), but the second lowest is 1598 which we know from DESCRIPTIVES is within
1 standard deviation from the mean. Similarly, the lowest value of weight is negative, but
its second lowest value is plausible. This suggests that the two extreme values are outliers
and probably represent data entry errors.

The output also identifies the case numbers for each extreme value, so we can see that
cases 30 and 38 are the ones with the erroneous values.

5.2.2 Dealing with suspicious data

If possible, suspect data should be checked and re-measured. However, this may not always
be feasible, in which case the researcher may decide to disregard these values. PSPP has
a feature whereby data can assume the special value ‘SYSMIS’, and will be disregarded
in future analysis. See Section 6.6 [Missing Observations|, page 29. You can set the two
suspect values to the ‘SYSMIS’ value using the RECODE command.

PSPP> recode height (179 = SYSMIS).
PSPP> recode weight (LOWEST THRU O = SYSMIS).

The first command says that for any observation which has a height value of 179, that
value should be changed to the SYSMIS value. The second command says that any weight
values of zero or less should be changed to SYSMIS. From now on, they will be ignored in
analysis. For detailed information about the RECODE command see Section 12.7 [RECODE],
page 123.

If you now re-run the DESCRIPTIVES or EXAMINE commands from the previous section,
you will see a data summary with more plausible parameters. You will also notice that the
data summaries indicate the two missing values.

Chapter 5: Using PSPP 17

5.2.3 Inverting negatively coded variables

Data entry errors are not the only reason for wanting to recode data. The sample file
hotel.sav comprises data gathered from a customer satisfaction survey of clients at a par-
ticular hotel. The following commands load the file and display its variables and associated
data:

PSPP> get file=’/usr/local/share/pspp/examples/hotel.sav’.
PSPP> display dictionary.

It yields the following output:

Variables

to—— - + —+- —4————- o pomm e o +
| | | | Measurement| | | | Print| Write |
| Name | Position]| Label | Level | RolelWidth|Alignment|Format| Format |
T e + —+- ————— et o s o +
lvi | 11T am |Ordinal | Input | 8|Right IF8.0 |F8.0 |
| | |satisfied | | | | I |
[[|with the | I I [I [I
| | |level of | | | | | | |
| | | service | | | | | | |
[v2 | 2|The value for|Ordinal | Input | 8|Right |[F8.0 |F8.0 |
| | |money was | | | I I |
| | | good | | | | | |
[v3 | 3|The staff |Ordinal | Input | 8|Right IF8.0 |F8.0 |
		were slow in						
		responding						
vd	4	My concerns	Ordinal	Input	8	Right	[F8.0	F8.0
		were dealt			I			
		with in an						
	lefficient							
		manner		I I I	I			
vs	5	There was too	Ordinal	Input	8	Right	[F8.0	F8.0
		much noise inl						
		the rooms						
e e Fommmmm ——————t oo + e

Value Labels
e + ——————————— +
|Variable Value | Label
B T it L o +
|T am satisfied with the level of service 1|Strongly Disagreel
| 2|Disagree |
| 3|No Opinion |
| 4|Agree
| 5|Strongly Agree |
+-—- -—- -—- + —————m - +
The value for money was good 1	Strongly Disagreel
2	Disagree
3	No Opinion
4	Agree
5	Strongly Agree
Bt Hmm +	
The staff were slow in responding 1	Strongly Disagreel

| 2|Disagree |
| 3|No Opinion |
| 4|Agree

| 5|Strongly Agree |

+——- -—- -—- -—- + ———————————- +

Chapter 5: Using PSPP 18

[My concerns were dealt with in an efficient manner 1	Strongly Disagreel
2	Disagree
3	No Opinion
4	Agree

| 5|Strongly Agree |
BT o +
| There was too much noise in the rooms 1|Strongly Disagreel
| 2|Disagree |
| 3|No Opinion |
| 4|Agree

| 5|Strongly Agree |

+-—- -—- -—- + ——————————— +

The output shows that all of the variables vl through v5 are measured on a 5 point Likert
scale, with 1 meaning “Strongly disagree” and 5 meaning “Strongly agree”. However, some
of the questions are positively worded (v1, v2, v4) and others are negatively worded (v3, v5).
To perform meaningful analysis, we need to recode the variables so that they all measure
in the same direction. We could use the RECODE command, with syntax such as:

recode v3 (1 =5) (2 =4) (4=2) (6 =1).

However an easier and more elegant way uses the COMPUTE command (see Section 12.3
[COMPUTE], page 115). Since the variables are Likert variables in the range (1 ... 5),
subtracting their value from 6 has the effect of inverting them:

compute var = 6 - var.

The following section uses this technique to recode the variables v3 and v5. After applying
COMPUTE for both variables, all subsequent commands will use the inverted values.

5.2.4 Testing data consistency

A sensible check to perform on survey data is the calculation of reliability. This gives
the statistician some confidence that the questionnaires have been completed thoughtfully.
If you examine the labels of variables vl, v3 and v4, you will notice that they ask very
similar questions. One would therefore expect the values of these variables (after recoding)
to closely follow one another, and we can test that with the RELIABILITY command (see
Section 15.17 [RELIABILITY], page 193). The following example shows a PSPP session
where the user recodes negatively scaled variables and then requests reliability statistics for
vl, v3, and v4.

PSPP> get file=’/usr/local/share/pspp/examples/hotel.sav’.
PSPP> compute v3 = 6 - v3.
PSPP> compute v5 = 6 - v5.
PSPP> reliability vi, v3, v4.
This yields the following output:
Scale: ANY

Case Processing Summary

O - +
|Cases | N|Percent|
B s +
[Valid |17] 100.0%|
|Excluded| 0Ol 0%

|Total |17] 100.0%]|
R oo mm +

Chapter 5: Using PSPP 19

Reliability Statistics

oo + -+
|Cronbach’s Alpha|N of Items|
R + -+
| .81l 31
R + -+

As a rule of thumb, many statisticians consider a value of Cronbach’s Alpha of 0.7 or
higher to indicate reliable data.

Here, the value is 0.81, which suggests a high degree of reliability among variables v1,
v3 and v4, so the data and the recoding that we performed are vindicated.

5.2.5 Testing for normality

Many statistical tests rely upon certain properties of the data. One common property, upon
which many linear tests depend, is that of normality — the data must have been drawn
from a normal distribution. It is necessary then to ensure normality before deciding upon
the test procedure to use. One way to do this uses the EXAMINE command.

In the following example, a researcher was examining the failure rates of equipment
produced by an engineering company. The file repairs.sav contains the mean time be-
tween failures (mtbf) of some items of equipment subject to the study. Before performing
linear analysis on the data, the researcher wanted to ascertain that the data is normally
distributed.

PSPP> get file=’/usr/local/share/pspp/examples/repairs.sav’.
PSPP> examine mtbf
/statistics=descriptives.

This produces the following output:

Descriptives

- -_— -_— -+ —_—— +
| | | std. |
| |Statistic| Error |
- -— -— ———————————— O e +
|Mean time between Mean | 8.78]| 1.10]
|failures (months) = ----- —+- ———t- +
| 95% Confidence Interval Lower | 6.53| |
| for Mean Bound | |

| Upper | 11.04| |
| Bound | |

1 -— -+ ——t—————— +
| 5% Trimmed Mean | 8.20]| |
[—+- ———+- +
| Median | 8.29| |
1 e - —+- ——t -—t
| Variance | 36.34| |
| B o +
| Std. Deviation | 6.03] |
| e o tommm +
| Minimum | 1.63| |
I e o R +
| Maximum | 26.47| |
I —+- ———+- +
| Range | 24.84| I
1 -— —+- —_—— -—t

Chapter 5: Using PSPP 20

| Interquartile Range | 6.03| |
N e -— —+- ———t- -+
| Skewness | 1.65] 43|
| e -— —+- ——t- -+
| Kurtosis | 3.41]| 83|
A e e +

A normal distribution has a skewness and kurtosis of zero. The skewness of mtbf in
the output above makes it clear that the mtbf figures have a lot of positive skew and
are therefore not drawn from a normally distributed variable. Positive skew can often be
compensated for by applying a logarithmic transformation, as in the following continuation
of the example:

PSPP> compute mtbf_ln = 1n (mtbf).
PSPP> examine mtbf_ln
/statistics=descriptives.

which produces the following additional output:

Descriptives

O -— -— B B +
| |Statistic|Std. Error|
O -— -— -— o B +
|mtbf_1n Mean | 1.95] 13|
| e + —————t -———+
95% Confidence Interval for Mean Lower Bound]| 1.69] |

Upper Bound| 2.22| |

- -— -— -— o B +

5% Trimmed Mean | 1.96] |

- ——————————— -— + _—— ——

Median I 2.11| |
—— fmmm —_—

<
)
2}
H.
©
B
Q
)
S
©

|
|
|
|
|
|
|
|
| e o + —-——+
| Std. Deviation | 701 |
| - -— -— -— + —_— —-—
| Minimum | 49| |
| - -— -— e e +
| Maximum | 3.28| |
| - -_— -_— -_— e e +
| Range I 2.79| |
| - Y + ———— —
| Interquartile Range | 88| |
| e et S t
| Skewness | -.37]| .43]
| e —————————————— e + —_—
| Kurtosis | 01l 83|
+——- -— -— -— e i +

The COMPUTE command in the first line above performs the logarithmic transformation:
compute mtbf_1n = 1ln (mtbf).

Rather than redefining the existing variable, this use of COMPUTE defines a new variable
mtbf_In which is the natural logarithm of mtbf. The final command in this example calls
EXAMINE on this new variable. The results show that both the skewness and kurtosis for
mtbf_In are very close to zero. This provides some confidence that the mtbf_In variable is
normally distributed and thus safe for linear analysis. In the event that no suitable trans-
formation can be found, then it would be worth considering an appropriate non-parametric

Chapter 5: Using PSPP 21

test instead of a linear one. See Section 15.11 [NPAR TESTS], page 176, for information
about non-parametric tests.

5.3 Hypothesis Testing

One of the most fundamental purposes of statistical analysis is hypothesis testing. Re-
searchers commonly need to test hypotheses about a set of data. For example, she might
want to test whether one set of data comes from the same distribution as another, or whether
the mean of a dataset significantly differs from a particular value. This section presents just
some of the possible tests that pspp offers.

The researcher starts by making a null hypothesis. Often this is a hypothesis which he
suspects to be false. For example, if he suspects that A is greater than B he will state the
null hypothesis as A = B.?

The p-value is a recurring concept in hypothesis testing. It is the highest acceptable
probability that the evidence implying a null hypothesis is false, could have been obtained
when the null hypothesis is in fact true. Note that this is not the same as “the probability
of making an error” nor is it the same as “the probability of rejecting a hypothesis when it
is true”.

5.3.1 Testing for differences of means

A common statistical test involves hypotheses about means. The T-TEST command is used
to find out whether or not two separate subsets have the same mean.

A researcher suspected that the heights and core body temperature of persons might be
different depending upon their sex. To investigate this, he posed two null hypotheses based
on the data from physiology.sav previously encountered:

e The mean heights of males and females in the population are equal.

e The mean body temperature of males and females in the population are equal.

For the purposes of the investigation the researcher decided to use a p-value of 0.05.

In addition to the T-test, the T-TEST command also performs the Levene test for equal
variances. If the variances are equal, then a more powerful form of the T-test can be
used. However if it is unsafe to assume equal variances, then an alternative calculation is
necessary. PSPP performs both calculations.

For the height variable, the output shows the significance of the Levene test to be 0.33
which means there is a 33% probability that the Levene test produces this outcome when
the variances are equal. Had the significance been less than 0.05, then it would have been
unsafe to assume that the variances were equal. However, because the value is higher than
0.05 the homogeneity of variances assumption is safe and the “Equal Variances” row (the
more powerful test) can be used. Examining this row, the two tailed significance for the
height t-test is less than 0.05, so it is safe to reject the null hypothesis and conclude that
the mean heights of males and females are unequal.

For the temperature variable, the significance of the Levene test is 0.58 so again, it is
safe to use the row for equal variances. The equal variances row indicates that the two
tailed significance for temperature is 0.20. Since this is greater than 0.05 we must reject

2 This example assumes that it is already proven that B is not greater than A.

Chapter 5: Using PSPP

22

the null hypothesis and conclude that there is insufficient evidence to suggest that the body

temperature of male and female persons are different.

The syntax for this analysis is:

PSPP> get file=’/usr/local/share/pspp/examples/physiology.sav’.

PSPP> recode height (179 = SYSMIS).

PSPP> t-test group=sex(0,1) /variables = height temperature.

PSPP produces the following output for this syntax:

Group Statistics

A o e Fmmm e e +

[(. | Std. | S.E. |

| Group | N| Mean | Deviation | Mean |

= e b = ———t- -+

|Height in millimeters Male [22]1796.49] 49.71] 10.60]

| Female|17[1610.77]| 25.43] 6.17]

+——= -— -— s St R Fmmm Fmmm +

| Internal body temperature in degrees Male [22]| 36.68]| 1.95] .42

|Celcius Female|18| 37.43| 1.61] .38

+-—= -— -— et St R Fommmmm o Fmmm +
Independent Samples Test

A e e T

| | Levene’s |

| | Test for |

| | Equality |

| | of |

| | Variances| T-Test for Equality of Means

| o= +————- +-———- o o Fom +

| | | | | I I | |

| | I | | I I | |

| I | | | I I | |

| | I | | I | | |

| | I | | | sig. | | |

| | I | | | (2- | Mean |Std. Errorl|

| | F | Sig.| t | df |tailed)|Difference|Differencel

o et SR +- e e pmmmm o pommm o +

|Height in Equal | .97] .331114.02]37.00] .000]| 185.72]| 13.24]

Imillimeters variances]| | | | I I |

| assumed | | | | I I | |

| Equal | I 115.15132.71]| .000| 185.72| 12.26]

| variances| | | | | | | |

| not | I | | | | |

| assumed | | | | I | | |

e + e + o m e e +

| Internal Equal | .31] .581]-1.31138.00] .198] -.75| .57

| body variances| | | | | I |

| temperature assumed | | | | I | |

|in degrees Equal I I [-1.33137.99]| .1901 -.75| .56

|Celcius variances| I | | I | |

| not | I | | I I |

| assumed | I | | I | | |

e e S e o Fmmm Fmm e +

+
|
|
|
|
|
|
|

——— 4
|
|
|
|
|
|
|
|
|

+

Chapter 5: Using PSPP 23

|

|

| Fom +
	95%
	Confidence
	Interval of
	the
	Difference
+————— +o———— +	
	Lower
. + R —	
Height in Equal 1158.88]212.55]	
Imillimeters variances	

| assumed | | |
| Equal 1160.761210.67|
variances		
not		
assumed		
- -_— + + -+
| Internal Equal | -1.91] .41
|body variances| | |
| temperature assumed | |

|in degrees Equal | -1.89] .39]
|Celcius variances| |

| not | | |
| assumed | | |
+——- -— + + -+

The T-TEST command tests for differences of means. Here, the height variable’s two
tailed significance is less than 0.05, so the null hypothesis can be rejected. Thus, the
evidence suggests there is a difference between the heights of male and female persons.
However the significance of the test for the temperature variable is greater than 0.05 so the
null hypothesis cannot be rejected, and there is insufficient evidence to suggest a difference
in body temperature.

5.3.2 Linear Regression

Linear regression is a technique used to investigate if and how a variable is linearly related
to others. If a variable is found to be linearly related, then this can be used to predict
future values of that variable.

In the following example, the service department of the company wanted to be able to
predict the time to repair equipment, in order to improve the accuracy of their quotations.
It was suggested that the time to repair might be related to the time between failures and
the duty cycle of the equipment. The p-value of 0.1 was chosen for this investigation. In
order to investigate this hypothesis, the REGRESSION command was used. This command
not only tests if the variables are related, but also identifies the potential linear relationship.
See Section 15.16 [REGRESSION], page 191.

A first attempt includes duty_cycle:

PSPP> get file=’/usr/local/share/pspp/examples/repairs.sav’.
PSPP> regression /variables = mtbf duty_cycle /dependent = mttr.
This attempt yields the following output (in part):

Coefficients (Mean time to repair (hours))
+-—- -— ———4- + -—- —+————- +-———+

Chapter 5: Using PSPP

+___ [Rp——

| (Constant)

|Mean time between
|failures (months)

|Ratio of working to non-

|working time

| Unstandardized | Standardized | | |
| Coefficients | Coefficients | | |
+-——- o o + | |
| B | Std. Errorl Beta | t |ISig.|
e + -— + -— —f————— et
10.59] 3.11]	.00	3.40].002		
3.02	.20] .95114.881.000]			
-1.12] 3.69]	-.02	-.30].763]		
R B e e e

24

The coefficients in the above table suggest that the formula mttr = 9.81 4+ 3.1 x mtbf +
1.09 x duty_cycle can be used to predict the time to repair. However, the significance value
for the duty_cycle coefficient is very high, which would make this an unsafe predictor. For
this reason, the test was repeated, but omitting the duty_cycle variable:

PSPP> regression /variables =

This second try produces the following output (in part):

mtbf /dependent =

mttr.

Coefficients (Mean time to repair (hours))

+___ [

| (Constant)

|Mean time between
|failures (months)

—t———— + -_— —t————— f———t
| Unstandardized | Standardized | | |
| Coefficients | Coefficients | | |
R + + -— -+ |
| B | Std. Error | Beta | t ISig.|
N + + -_— —————— +———
| 9.90] 2.10] .00| 4.71].000]|
I 3.01| .20] .94115.211.000]
|

—————————————— do————————+

This time, the significance of all coefficients is no higher than 0.06, suggesting that at
the 0.06 level, the formula mttr = 10.5 + 3.11 x mtbf is a reliable predictor of the time to

repair.

25

6 The PSPP language

This chapter discusses elements common to many PSPP commands. Later chapters describe
individual commands in detail.

6.1 Tokens

PSPP divides most syntax file lines into series of short chunks called tokens. Tokens are then
grouped to form commands, each of which tells PSPP to take some action—read in data,
write out data, perform a statistical procedure, etc. Each type of token is described below.

Identifiers Identifiers are names that typically specify variables, commands, or subcom-

Keywords

Numbers

Strings

mands. The first character in an identifier must be a letter, ‘#’, or ‘@’. The
remaining characters in the identifier must be letters, digits, or one of the fol-
lowing special characters:

_$#o

Identifiers may be any length, but only the first 64 bytes are significant. Iden-
tifiers are not case-sensitive: foobar, Foobar, FooBar, FOOBAR, and FoObaR are
different representations of the same identifier.

Some identifiers are reserved. Reserved identifiers may not be used in any con-
text besides those explicitly described in this manual. The reserved identifiers
are:

ALL AND BY EQ GE GT LE LT NE NOT OR TO WITH

Keywords are a subclass of identifiers that form a fixed part of command syntax.
For example, command and subcommand names are keywords. Keywords may
be abbreviated to their first 3 characters if this abbreviation is unambiguous.
(Unique abbreviations of 3 or more characters are also accepted: ‘FRE’, ‘FREQ’,
and ‘FREQUENCIES’ are equivalent when the last is a keyword.)

Reserved identifiers are always used as keywords. Other identifiers may be used
both as keywords and as user-defined identifiers, such as variable names.

Numbers are expressed in decimal. A decimal point is optional. Numbers may
be expressed in scientific notation by adding ‘e’ and a base-10 exponent, so that
‘1.234e3’ has the value 1234. Here are some more examples of valid numbers:

-5 3.14159265359 1e100 -.707 8945.
Negative numbers are expressed with a ‘=’ prefix. However, in situations where
a literal ‘=’ token is expected, what appears to be a negative number is treated
as ‘=’ followed by a positive number.
No white space is allowed within a number token, except for horizontal white
space between ‘-’ and the rest of the number.
The last example above, ‘8945." is interpreted as two tokens, ‘8945’ and ‘.’ if
it is the last token on a line. See Section 6.2 [Forming commands of tokens],
page 26.

Strings are literal sequences of characters enclosed in pairs of single quotes (‘?”)
or double quotes (‘"’). To include the character used for quoting in the string,

Chapter 6: The PSPP language 26

double it, e.g. ‘’it’’s an apostrophe’’. White space and case of letters are
significant inside strings.

Strings can be concatenated using ‘+’, so that ‘"a" + ’b’ + ’¢’’ is equivalent
to ‘’abc’’. So that a long string may be broken across lines, a line break may
precede or follow, or both precede and follow, the ‘+’. (However, an entirely
blank line preceding or following the ‘+’ is interpreted as ending the current
command.)

Strings may also be expressed as hexadecimal character values by prefixing
the initial quote character by ‘x’ or ‘X’. Regardless of the syntax file or ac-
tive dataset’s encoding, the hexadecimal digits in the string are interpreted as
Unicode characters in UTF-8 encoding.

Individual Unicode code points may also be expressed by specifying the hex-
adecimal code point number in single or double quotes preceded by ‘u’ or ‘U’.
For example, Unicode code point U+1D11E, the musical G clef character, could
be expressed as U’1D11E’. Invalid Unicode code points (above U+10FFFF or
in between U+D800 and U+DFFF) are not allowed.

When strings are concatenated with ‘+’; each segment’s prefix is considered
individually. For example, *The G clef symbol is:’ + u"1d1le" + "." inserts
a G clef symbol in the middle of an otherwise plain text string.

Punctuators and Operators
These tokens are the punctuators and operators:

, /= () + =%/ %k < <=<>>>= ~=§ |

Most of these appear within the syntax of commands, but the period (*.”)
punctuator is used only at the end of a command. It is a punctuator only as
the last character on a line (except white space). When it is the last non-space
character on a line, a period is not treated as part of another token, even if it
would otherwise be part of, e.g., an identifier or a floating-point number.

6.2 Forming commands of tokens

Most PSPP commands share a common structure. A command begins with a command
name, such as FREQUENCIES, DATA LIST, or N OF CASES. The command name may be ab-
breviated to its first word, and each word in the command name may be abbreviated to its
first three or more characters, where these abbreviations are unambiguous.

The command name may be followed by one or more subcommands. Each subcommand
begins with a subcommand name, which may be abbreviated to its first three letters. Some
subcommands accept a series of one or more specifications, which follow the subcommand
name, optionally separated from it by an equals sign (‘="). Specifications may be separated
from each other by commas or spaces. Each subcommand must be separated from the next
(if any) by a forward slash (‘/7).

There are multiple ways to mark the end of a command. The most common way is to
end the last line of the command with a period (‘.”) as described in the previous section
(see Section 6.1 [Tokens], page 25). A blank line, or one that consists only of white space

or comments, also ends a command.

Chapter 6: The PSPP language 27

6.3 Syntax Variants

There are three variants of command syntax, which vary only in how they detect the end
of one command and the start of the next.

In interactive mode, which is the default for syntax typed at a command prompt, a
period as the last non-blank character on a line ends a command. A blank line also ends a
command.

In batch mode, an end-of-line period or a blank line also ends a command. Additionally,
it treats any line that has a non-blank character in the leftmost column as beginning a new
command. Thus, in batch mode the second and subsequent lines in a command must be
indented.

Regardless of the syntax mode, a plus sign, minus sign, or period in the leftmost column
of a line is ignored and causes that line to begin a new command. This is most useful in
batch mode, in which the first line of a new command could not otherwise be indented, but
it is accepted regardless of syntax mode.

The default mode for reading commands from a file is auto mode. It is the same as
batch mode, except that a line with a non-blank in the leftmost column only starts a new
command if that line begins with the name of a PSPP command. This correctly interprets
most valid PSPP syntax files regardless of the syntax mode for which they are intended.

The --interactive (or -i) or —-batch (or -b) options set the syntax mode for files
listed on the PsPP command line. See Section 3.1 [Main Options], page 3, for more details.

6.4 Types of Commands

Commands in PsPP are divided roughly into six categories:

Utility commands
Set or display various global options that affect PSPP operations. May appear
anywhere in a syntax file. See Chapter 17 [Utility commands], page 234.

File definition commands
Give instructions for reading data from text files or from special binary “system
files”. Most of these commands replace any previous data or variables with new
data or variables. At least one file definition command must appear before the
first command in any of the categories below. See Chapter 8 [Data Input and
Output], page 61.

Input program commands
Though rarely used, these provide tools for reading data files in arbitrary textual
or binary formats. See Section 8.9 [INPUT PROGRAM], page 70.

Transformations
Perform operations on data and write data to output files. Transformations are
not carried out until a procedure is executed.

Restricted transformations
Transformations that cannot appear in certain contexts. See Section 6.5 [Order
of Commands]|, page 28, for details.

Chapter 6: The PSPP language 28

Procedures
Analyze data, writing results of analyses to the listing file. Cause transforma-
tions specified earlier in the file to be performed. In a more general sense, a
procedure is any command that causes the active dataset (the data) to be read.

6.5 Order of Commands

PSPP does not place many restrictions on ordering of commands. The main restriction is
that variables must be defined before they are otherwise referenced. This section describes
the details of command ordering, but most users will have no need to refer to them.

PSPP possesses five internal states, called initial, input-program file-type, transformation,
and procedure states. (Please note the distinction between the INPUT PROGRAM and FILE
TYPE commands and the input-program and file-type states.)

PSPP starts in the initial state. Each successful completion of a command may cause a

state transition. Each type of command has its own rules for state transitions:
Utility commands

e Valid in any state.

e Do not cause state transitions. Exception: when N OF CASES is executed in

the procedure state, it causes a transition to the transformation state.

DATA LIST

e Valid in any state.

e When executed in the initial or procedure state, causes a transition to the
transformation state.

e Clears the active dataset if executed in the procedure or transformation
state.
INPUT PROGRAM
e Invalid in input-program and file-type states.
e (Causes a transition to the intput-program state.
e Clears the active dataset.

FILE TYPE
e Invalid in intput-program and file-type states.
e Causes a transition to the file-type state.
e Clears the active dataset.
Other file definition commands
e Invalid in input-program and file-type states.
e Cause a transition to the transformation state.
e Clear the active dataset, except for ADD FILES, MATCH FILES, and UPDATE.
Transformations
e Invalid in initial and file-type states.
e Cause a transition to the transformation state.

Restricted transformations
e Invalid in initial, input-program, and file-type states.

Chapter 6: The PSPP language 29

e Cause a transition to the transformation state.

Procedures
e Invalid in initial, input-program, and file-type states.

e Cause a transition to the procedure state.

6.6 Handling missing observations

PSPP includes special support for unknown numeric data values. Missing observations are
assigned a special value, called the system-missing value. This “value” actually indicates the
absence of a value; it means that the actual value is unknown. Procedures automatically
exclude from analyses those observations or cases that have missing values. Details of
missing value exclusion depend on the procedure and can often be controlled by the user;
refer to descriptions of individual procedures for details.

The system-missing value exists only for numeric variables. String variables always have
a defined value, even if it is only a string of spaces.

Variables, whether numeric or string, can have designated user-missing values. Every
user-missing value is an actual value for that variable. However, most of the time user-
missing values are treated in the same way as the system-missing value.

For more information on missing values, see the following sections: Section 6.7 [Datasets],
page 29, Section 11.14 [MISSING VALUES], page 102, Chapter 7 [Expressions|, page 43.
See also the documentation on individual procedures for information on how they handle
missing values.

6.7 Datasets

pspp works with data organized into datasets. A dataset consists of a set of variables, which
taken together are said to form a dictionary, and one or more cases, each of which has one
value for each variable.

At any given time PSPP has exactly one distinguished dataset, called the active dataset.
Most PsPP commands work only with the active dataset. In addition to the active dataset,
PSPP also supports any number of additional open datasets. The DATASET commands can
choose a new active dataset from among those that are open, as well as create and destroy
datasets (see Section 8.4 [DATASET], page 62).

The sections below describe variables in more detail.

6.7.1 Attributes of Variables
Each variable has a number of attributes, including:

Name An identifier, up to 64 bytes long. Each variable must have a different name.
See Section 6.1 [Tokens], page 25.

Some system variable names begin with ‘$’, but user-defined variables’ names
may not begin with ‘$’.

The final character in a variable name should not be ‘.’, because such an iden-
tifier will be misinterpreted when it is the final token on a line: F0O0. is di-
vided into two separate tokens, ‘FO0’ and ‘.’, indicating end-of-command. See
Section 6.1 [Tokens], page 25.

Chapter 6: The PSPP language 30

The final character in a variable name should not be ‘_’, because some such
identifiers are used for special purposes by PSPP procedures.

As with all pspP identifiers, variable names are not case-sensitive. PSPP capi-
talizes variable names on output the same way they were capitalized at their
point of definition in the input.

Type Numeric or string.

Width (string variables only) String variables with a width of 8 characters or fewer
are called short string variables. Short string variables may be used in a few
contexts where long string variables (those with widths greater than 8) are not
allowed.

Position ~ Variables in the dictionary are arranged in a specific order. DISPLAY can be
used to show this order: see Section 11.1 [DISPLAY], page 97.

Initialization
Either reinitialized to 0 or spaces for each case, or left at its existing value. See
Section 11.22 [LEAVE], page 107.

Missing values

Optionally, up to three values, or a range of values, or a specific value plus a
range, can be specified as user-missing values. There is also a system-missing
value that is assigned to an observation when there is no other obvious value for
that observation. Observations with missing values are automatically excluded
from analyses. User-missing values are actual data values, while the system-
missing value is not a value at all. See Section 6.6 [Missing Observations],
page 29.

Variable label
A string that describes the variable. See Section 11.8 [VARIABLE LABELS],
page 101.

Value label
Optionally, these associate each possible value of the variable with a string. See
Section 11.12 [VALUE LABELS], page 102.

Print format
Display width, format, and (for numeric variables) number of decimal places.
This attribute does not affect how data are stored, just how they are displayed.
Example: a width of 8, with 2 decimal places. See Section 6.7.4 [Input and
Output Formats|, page 31.

Write format
Similar to print format, but used by the WRITE command (see Section 8.17
[WRITE], page 77).

Custom attributes
User-defined associations between names and values. See Section 11.15 [VARI-
ABLE ATTRIBUTE], page 103.

Role The intended role of a variable for use in dialog boxes in graphical user inter-
faces. See Section 11.19 [VARIABLE ROLE], page 105.

Chapter 6: The PSPP language 31

6.7.2 Variables Automatically Defined by pspp

There are seven system variables. These are not like ordinary variables because system
variables are not always stored. They can be used only in expressions. These system
variables, whose values and output formats cannot be modified, are described below.

$CASENUM Case number of the case at the moment. This changes as cases are shuffled
around.

$DATE Date the PSPP process was started, in format A9, following the pattern DD-MMM-
YY.

$DATE11 Date the PSPP process was started, in format All, following the pattern
DD-MMM-YYYY.

$JDATE Number of days between 15 Oct 1582 and the time the PSPP process was started.
$LENGTH Page length, in lines, in format F11.
$SYSMIS System missing value, in format F1.

$TIME Number of seconds between midnight 14 Oct 1582 and the time the active
dataset was read, in format F20.

$WIDTH Page width, in characters, in format F3.

6.7.3 Lists of variable names

To refer to a set of variables, list their names one after another. Optionally, their names
may be separated by commas. To include a range of variables from the dictionary in the
list, write the name of the first and last variable in the range, separated by TO. For instance,
if the dictionary contains six variables with the names ID, X1, X2, GOAL, MET, and NEXTGOAL,
in that order, then X2 TO MET would include variables X2, GOAL, and MET.

Commands that define variables, such as DATA LIST, give TO an alternate meaning. With
these commands, TO define sequences of variables whose names end in consecutive integers.
The syntax is two identifiers that begin with the same root and end with numbers, separated
by TO. The syntax X1 TO X5 defines 5 variables, named X1, X2, X3, X4, and X5. The
syntax ITEMO0O08 TO ITEMOO13 defines 6 variables, named ITEM0008, ITEMO009, ITEM0O010,
ITEMOO11, ITEMOO12, and ITEMO0013. The syntaxes QUES001 TO QUES9 and QUES6 TO QUES3
are invalid.

After a set of variables has been defined with DATA LIST or another command with this
method, the same set can be referenced on later commands using the same syntax.

6.7.4 Input and Output Formats

An input format describes how to interpret the contents of an input field as a number or
a string. It might specify that the field contains an ordinary decimal number, a time or
date, a number in binary or hexadecimal notation, or one of several other notations. Input
formats are used by commands such as DATA LIST that read data or syntax files into the
PSPP active dataset.

Every input format corresponds to a default output format that specifies the formatting
used when the value is output later. It is always possible to explicitly specify an output
format that resembles the input format. Usually, this is the default, but in cases where the

Chapter 6: The PSPP language 32

input format is unfriendly to human readability, such as binary or hexadecimal formats, the
default output format is an easier-to-read decimal format.

Every variable has two output formats, called its print format and write format. Print
formats are used in most output contexts; write formats are used only by WRITE (see
Section 8.17 [WRITE], page 77). Newly created variables have identical print and write
formats, and FORMATS, the most commonly used command for changing formats (see
Section 11.11 [FORMATS], page 102), sets both of them to the same value as well. Thus,
most of the time, the distinction between print and write formats is unimportant.

Input and output formats are specified to PSPP with a format specification of the form
TYPEw or TYPEw.d, where TYPE is one of the format types described later, w is a field
width measured in columns, and d is an optional number of decimal places. If d is omitted,
a value of 0 is assumed. Some formats do not allow a nonzero d to be specified.

The following sections describe the input and output formats supported by psSpp.

6.7.4.1 Basic Numeric Formats

The basic numeric formats are used for input and output of real numbers in standard or
scientific notation. The following table shows an example of how each format displays
positive and negative numbers with the default decimal point setting:

Format 3141.59 -3141.59
F&8.2 3141.59 -3141.59
COMMA9.2 3,141.59 -3,141.59
DOT9.2 3.141,59 -3.141,59
DOLLAR10.2 $3,141.59 -$3,141.59
PCT9.2 3141.59% -3141.59%
E8.1 3.1E+003 -3.1E+003

On output, numbers in F format are expressed in standard decimal notation with the
requested number of decimal places. The other formats output some variation on this style:
e Numbers in COMMA format are additionally grouped every three digits by inserting
a grouping character. The grouping character is ordinarily a comma, but it can be
changed to a period (see [SET DECIMALJ, page 241).

e DOT format is like COMMA format, but it interchanges the role of the decimal point
and grouping characters. That is, the current grouping character is used as a decimal
point and vice versa.

e DOLLAR format is like COMMA format, but it prefixes the number with ‘$’.

e PCT format is like F format, but adds ‘%’ after the number.

e The E format always produces output in scientific notation.

On input, the basic numeric formats accept positive and numbers in standard decimal
notation or scientific notation. Leading and trailing spaces are allowed. An empty or all-
spaces field, or one that contains only a single period, is treated as the system missing
value.

In scientific notation, the exponent may be introduced by a sign (‘+’ or ‘=’), or by one of
the letters ‘e’ or ‘d’ (in uppercase or lowercase), or by a letter followed by a sign. A single
space may follow the letter or the sign or both.

Chapter 6: The PSPP language 33

On fixed-format DATA LIST (see Section 8.5.1 [DATA LIST FIXED], page 63) and in a
few other contexts, decimals are implied when the field does not contain a decimal point.
In F6.5 format, for example, the field 314159 is taken as the value 3.14159 with implied
decimals. Decimals are never implied if an explicit decimal point is present or if scientific
notation is used.

E and F formats accept the basic syntax already described. The other formats allow
some additional variations:

e COMMA, DOLLAR, and DOT formats ignore grouping characters within the integer
part of the input field. The identity of the grouping character depends on the format.

e DOLLAR format allows a dollar sign to precede the number. In a negative number,
the dollar sign may precede or follow the minus sign.

e PCT format allows a percent sign to follow the number.

All of the basic number formats have a maximum field width of 40 and accept no more
than 16 decimal places, on both input and output. Some additional restrictions apply:

e Asinput formats, the basic numeric formats allow no more decimal places than the field
width. As output formats, the field width must be greater than the number of decimal
places; that is, large enough to allow for a decimal point and the number of requested
decimal places. DOLLAR and PCT formats must allow an additional column for ‘$’
or ‘%’.

e The default output format for a given input format increases the field width enough to
make room for optional input characters. If an input format calls for decimal places,
the width is increased by 1 to make room for an implied decimal point. COMMA,
DOT, and DOLLAR formats also increase the output width to make room for grouping
characters. DOLLAR and PCT further increase the output field width by 1 to make
room for ‘¢’ or ‘%’. The increased output width is capped at 40, the maximum field
width.

e The E format is exceptional. For output, E format has a minimum width of 7 plus the
number of decimal places. The default output format for an E input format is an E
format with at least 3 decimal places and thus a minimum width of 10.

More details of basic numeric output formatting are given below:

e Output rounds to nearest, with ties rounded away from zero. Thus, 2.5 is output as 3
in F1.0 format, and -1.125 as -1.13 in F5.1 format.

e The system-missing value is output as a period in a field of spaces, placed in the
decimal point’s position, or in the rightmost column if no decimal places are requested.
A period is used even if the decimal point character is a comma.

e A number that does not fill its field is right-justified within the field.

e A number is too large for its field causes decimal places to be dropped to make room.
If dropping decimals does not make enough room, scientific notation is used if the field
is wide enough. If a number does not fit in the field, even in scientific notation, the
overflow is indicated by filling the field with asterisks (‘*’).

e COMMA, DOT, and DOLLAR formats insert grouping characters only if space is
available for all of them. Grouping characters are never inserted when all decimal
places must be dropped. Thus, 1234.56 in COMMAJ5.2 format is output as ¢ 1235’

Chapter 6: The PSPP language 34

without a comma, even though there is room for one, because all decimal places were
dropped.

e DOLLAR or PCT format drop the ‘$’ or ‘%’ only if the number would not fit at all
without it. Scientific notation with ‘$’ or ‘%’ is preferred to ordinary decimal notation
without it.

e Except in scientific notation, a decimal point is included only when it is followed by
a digit. If the integer part of the number being output is 0, and a decimal point is
included, then PsPP ordinarily drops the zero before the decimal point. However, in
F, COMMA, or DOT formats, PSPP keeps the zero if SET LEADZERO is set to ON (see [SET
LEADZERO], page 243).

In scientific notation, the number always includes a decimal point, even if it is not
followed by a digit.

e A negative number includes a minus sign only in the presence of a nonzero digit: -0.01
is output as ‘=.01’ in F4.2 format but as ¢ .0’ in F4.1 format. Thus, a “negative
zero” never includes a minus sign.

e In negative numbers output in DOLLAR format, the dollar sign follows the negative
sign. Thus, -9.99 in DOLLARG.2 format is output as -$9.99.

e In scientific notation, the exponent is output as ‘E’ followed by ‘+’ or ‘-’ and exactly
three digits. Numbers with magnitude less than 10%*-999 or larger than 10¥*999 are not
supported by most computers, but if they are supported then their output is considered
to overflow the field and they are output as asterisks.

e On most computers, no more than 15 decimal digits are significant in output, even
if more are printed. In any case, output precision cannot be any higher than input
precision; few data sets are accurate to 15 digits of precision. Unavoidable loss of
precision in intermediate calculations may also reduce precision of output.

e Special values such as infinities and “not a number” values are usually converted to
the system-missing value before printing. In a few circumstances, these values are
output directly. In fields of width 3 or greater, special values are output as however
many characters fit from +Infinity or -Infinity for infinities, from NaN for “not a
number,” or from Unknown for other values (if any are supported by the system). In
fields under 3 columns wide, special values are output as asterisks.

6.7.4.2 Custom Currency Formats

The custom currency formats are closely related to the basic numeric formats, but they
allow users to customize the output format. The SET command configures custom currency
formats, using the syntax

SET CCx="string".
where x is A, B, C, D, or E, and string is no more than 16 characters long.

string must contain exactly three commas or exactly three periods (but not both), except
that a single quote character may be used to “escape” a following comma, period, or single
quote. If three commas are used, commas are used for grouping in output, and a period is
used as the decimal point. Uses of periods reverses these roles.

The commas or periods divide string into four fields, called the negative prefix, prefix,
suffix, and negative suffix, respectively. The prefix and suffix are added to output whenever

Chapter 6: The PSPP language 35

space is available. The negative prefix and negative suffix are always added to a negative
number when the output includes a nonzero digit.

The following syntax shows how custom currency formats could be used to reproduce

basic numeric formats:

SET CCA="-,,,". /% Same as COMMA.

SET CCB="-...". /*x Same as DOT.

SET CCC="-,$,,". /* Same as DOLLAR.

SET CCD="-,,%,". /* Like PCT, but groups with commas.

Here are some more examples of custom currency formats. The final example shows how

to use a single quote to escape a delimiter:

SET CCA=",EUR,,-". /* Euro.

SET CCB="(,USD ,,)". /* US dollar.

SET CCC="-.R$..". /* Brazilian real.
SET CCD="-,, NIS,". /* Israel shekel.
SET CCE="-.Rp’. ..". /* Indonesia Rupiah.

These formats would yield the following output:

Format 3145.59 -3145.59
CCA12.2 EUR3,145.59 EUR3,145.59-
CCB14.2 USD 3,145.59 (USD 3,145.59)
CCC11.2 R$3.145,59 -R$3.145,59
CCD13.2 3,145.59 NIS -3,145.59 NIS
CCE10.0 Rp. 3.146 -Rp. 3.146

The default for all the custom currency formats is ‘-, , ,’, equivalent to COMMA format.

6.7.4.3 Legacy Numeric Formats

The N and Z numeric formats provide compatibility with legacy file formats. They have
much in common:

Output is rounded to the nearest representable value, with ties rounded away from
ZEro.

Numbers too large to display are output as a field filled with asterisks (‘*).

The decimal point is always implicitly the specified number of digits from the right
edge of the field, except that Z format input allows an explicit decimal point.
Scientific notation may not be used.

The system-missing value is output as a period in a field of spaces. The period is
placed just to the right of the implied decimal point in Z format, or at the right end

in N format or in Z format if no decimal places are requested. A period is used even if
the decimal point character is a comma.

Field width may range from 1 to 40. Decimal places may range from 0 up to the field
width, to a maximum of 16.

When a legacy numeric format used for input is converted to an output format, it is
changed into the equivalent F format. The field width is increased by 1 if any decimal
places are specified, to make room for a decimal point. For Z format, the field width is

Chapter 6: The PSPP language 36

increased by 1 more column, to make room for a negative sign. The output field width
is capped at 40 columns.

N Format

The N format supports input and output of fields that contain only digits. On input, leading
or trailing spaces, a decimal point, or any other non-digit character causes the field to be
read as the system-missing value. As a special exception, an N format used on DATA LIST
FREE or DATA LIST LIST is treated as the equivalent F format.

On output, N pads the field on the left with zeros. Negative numbers are output like
the system-missing value.

7Z Format

The Z format is a “zoned decimal” format used on IBM mainframes. Z format encodes the
sign as part of the final digit, which must be one of the following:

0123456789
{ABCDEFGHI
}JKLMNOPQR

where the characters in each row represent digits 0 through 9 in order. Characters in the
first two rows indicate a positive sign; those in the third indicate a negative sign.

On output, Z fields are padded on the left with spaces. On input, leading and trailing
spaces are ignored. Any character in an input field other than spaces, the digit characters
above, and ‘.’ causes the field to be read as system-missing.

The decimal point character for input and output is always ‘.’, even if the decimal point
character is a comma (see [SET DECIMAL], page 241).

Nonzero, negative values output in Z format are marked as negative even when no
nonzero digits are output. For example, -0.2 is output in Z1.0 format as ‘J’. The “negative
zero” value supported by most machines is output as positive.

6.7.4.4 Binary and Hexadecimal Numeric Formats

The binary and hexadecimal formats are primarily designed for compatibility with existing
machine formats, not for human readability. All of them therefore have a F format as
default output format. Some of these formats are only portable between machines with
compatible byte ordering (endianness) or floating-point format.

Binary formats use byte values that in text files are interpreted as special control func-
tions, such as carriage return and line feed. Thus, data in binary formats should not be
included in syntax files or read from data files with variable-length records, such as ordinary
text files. They may be read from or written to data files with fixed-length records. See
Section 8.8 [FILE HANDLE], page 67, for information on working with fixed-length records.

P and PK Formats

These are binary-coded decimal formats, in which every byte (except the last, in P format)
represents two decimal digits. The most-significant 4 bits of the first byte is the most-
significant decimal digit, the least-significant 4 bits of the first byte is the next decimal
digit, and so on.

Chapter 6: The PSPP language 37

In P format, the most-significant 4 bits of the last byte are the least-significant decimal
digit. The least-significant 4 bits represent the sign: decimal 15 indicates a negative value,
decimal 13 indicates a positive value.

Numbers are rounded downward on output. The system-missing value and numbers
outside representable range are output as zero.

The maximum field width is 16. Decimal places may range from 0 up to the number of
decimal digits represented by the field.

The default output format is an F format with twice the input field width, plus one
column for a decimal point (if decimal places were requested).

IB and PIB Formats

These are integer binary formats. IB reads and writes 2’s complement binary integers, and
PIB reads and writes unsigned binary integers. The byte ordering is by default the host
machine’s, but SET RIB may be used to select a specific byte ordering for reading (see
[SET RIB]J, page 241) and SET WIB, similarly, for writing (see [SET WIB]|, page 244).

The maximum field width is 8. Decimal places may range from 0 up to the number of
decimal digits in the largest value representable in the field width.

The default output format is an F format whose width is the number of decimal digits
in the largest value representable in the field width, plus 1 if the format has decimal places.

RB Format

This is a binary format for real numbers. By default it reads and writes the host machine’s
floating-point format, but SET RRB may be used to select an alternate floating-point
format for reading (see [SET RRB|, page 241) and SET WRB, similarly, for writing (see
[SET WRBJ, page 244).

The recommended field width depends on the floating-point format. NATIVE (the
default format), IDL, IDB, VD, VG, and ZL formats should use a field width of 8. ISL,
ISB, VF, and ZS formats should use a field width of 4. Other field widths do not produce
useful results. The maximum field width is 8. No decimal places may be specified.

The default output format is F8.2.

PIBHEX and RBHEX Formats

These are hexadecimal formats, for reading and writing binary formats where each byte has
been recoded as a pair of hexadecimal digits.

A hexadecimal field consists solely of hexadecimal digits ‘0’...‘9” and ‘A’. . .‘F’. Upper-
case and lowercase are accepted on input; output is in uppercase.

Other than the hexadecimal representation, these formats are equivalent to PIB and
RB formats, respectively. However, bytes in PIBHEX format are always ordered with the
most-significant byte first (big-endian order), regardless of the host machine’s native byte
order or PSPP settings.

Field widths must be even and between 2 and 16. RBHEX format allows no decimal
places; PIBHEX allows as many decimal places as a PIB format with half the given width.

Chapter 6: The PSPP language

6.7.4.5 Time and Date Formats

38

In PSPP, a time is an interval. The time formats translate between human-friendly descrip-
tions of time intervals and PSPP’s internal representation of time intervals, which is simply
the number of seconds in the interval. PSPP has three time formats:

Time Format Template Example
MTIME MM:SS.ss 91:17.01
TIME hh:MM:SS.ss 01:31:17.01
DTIME DD HH:MM:SS.ss 00 04:31:17.01

A date is a moment in the past or the future. Internally, PSPP represents a date as the
number of seconds since the epoch, midnight, Oct. 14, 1582. The date formats translate
between human-readable dates and PSPP’s numeric representation of dates and times. PSPP

has several date formats:

Date Format Template Example

DATE dd-mmm-yyyy 01-0CT-1978

ADATE mm/dd/yyyy 10/01/1978

EDATE dd.mm.yyyy 01.10.1978

JDATE yyyyjij 1978274

SDATE yyyy/mm/dd 1978/10/01

QYR qQyyyy 3Q 1978

MOYR mmm yyyy OCT 1978

WKYR ww WK yyyy 40 WK 1978

DATETIME dd-mmm-yyyy HH:MM:SS.ss 01-0CT-1978 04:31:17.01
YMDHMS yyyy-mm-dd HH:MM:SS.ss 1978-01-0CT 04:31:17.01

The templates in the preceding tables describe how the time and date formats are input
and output:

dd Day of month, from 1 to 31. Always output as two digits.
mm
mmm Month. In output, mm is output as two digits, mmm as the first three letters of an

English month name (January, February, .. .). In input, both of these formats,

plus Roman numerals, are accepted.

Year. In output, DATETIME and YMDHMS always produce 4-digit years;
other formats can produce a 2- or 4-digit year. The century assumed for 2-digit
years depends on the EPOCH setting (see [SET EPOCH], page 241). In output,
a year outside the epoch causes the whole field to be filled with asterisks (‘*’).

Yyyy

iij Day of year (Julian day), from 1 to 366. This is exactly three digits giving the
count of days from the start of the year. January 1 is considered day 1.

q Quarter of year, from 1 to 4. Quarters start on January 1, April 1, July 1, and
October 1.

wW Week of year, from 1 to 53. Output as exactly two digits. January 1 is the first
day of week 1.

Chapter 6: The PSPP language 39

DD
hh

HH
MM

SS.ss

Count of days, which may be positive or negative. Output as at least two digits.

Count of hours, which may be positive or negative. Output as at least two
digits.
Hour of day, from 0 to 23. Output as exactly two digits.

In MTIME, count of minutes, which may be positive or negative. Output as at
least two digits.

In other formats, minute of hour, from 0 to 59. Output as exactly two digits.

Seconds within minute, from 0 to 59. The integer part is output as exactly two
digits. On output, seconds and fractional seconds may or may not be included,
depending on field width and decimal places. On input, seconds and fractional
seconds are optional. The DECIMAL setting controls the character accepted
and displayed as the decimal point (see [SET DECIMAL]|, page 241).

For output, the date and time formats use the delimiters indicated in the table. For
input, date components may be separated by spaces or by one of the characters ‘-’, </’ *.”,
or ‘,’, and time components may be separated by spaces or ‘:’. On input, the ‘Q’ separating
quarter from year and the ‘WK’ separating week from year may be uppercase or lowercase,
and the spaces around them are optional.

On input, all time and date formats accept any amount of leading and trailing white

space.

The maximum width for time and date formats is 40 columns. Minimum input and
output width for each of the time and date formats is shown below:

Format Min. Input Width Min. Output Width Option
DATE 8 9 4-digit year
ADATE 8 8 4-digit year
EDATE 8 8 4-digit year
JDATE 5 5 4-digit year
SDATE 8 8 4-digit year
QYR 4 6 4-digit year
MOYR 6 6 4-digit year
WKYR 6 8 4-digit year
DATETIME 17 17 seconds
YMDHMS 12 16 seconds
MTIME 4 5

TIME 5 5 seconds
DTIME 8 8 seconds

In the table, “Option” describes what increased output width enables:

4-digit year

seconds

A field 2 columns wider than the minimum includes a 4-digit year. (DATETIME
and YMDHMS formats always include a 4-digit year.)

A field 3 columns wider than the minimum includes seconds as well as minutes.
A field 5 columns wider than minimum, or more, can also include a decimal

Chapter 6: The PSPP language 40

point and fractional seconds (but no more than allowed by the format’s decimal
places).

For the time and date formats, the default output format is the same as the input format,
except that PSPP increases the field width, if necessary, to the minimum allowed for output.

Time or dates narrower than the field width are right-justified within the field.

When a time or date exceeds the field width, characters are trimmed from the end until
it fits. This can occur in an unusual situation, e.g. with a year greater than 9999 (which
adds an extra digit), or for a negative value on MTIME, TIME, or DTIME (which adds a
leading minus sign).

The system-missing value is output as a period at the right end of the field.

6.7.4.6 Date Component Formats

The WKDAY and MONTH formats provide input and output for the names of weekdays
and months, respectively.

On output, these formats convert a number between 1 and 7, for WKDAY, or between 1
and 12, for MONTH, into the English name of a day or month, respectively. If the name is
longer than the field, it is trimmed to fit. If the name is shorter than the field, it is padded
on the right with spaces. Values outside the valid range, and the system-missing value, are
output as all spaces.

On input, English weekday or month names (in uppercase or lowercase) are converted
back to their corresponding numbers. Weekday and month names may be abbreviated to
their first 2 or 3 letters, respectively.

The field width may range from 2 to 40, for WKDAY, or from 3 to 40, for MONTH. No
decimal places are allowed.

The default output format is the same as the input format.

6.7.4.7 String Formats

The A and AHEX formats are the only ones that may be assigned to string variables.
Neither format allows any decimal places.

In A format, the entire field is treated as a string value. The field width may range from
1 to 32,767, the maximum string width. The default output format is the same as the input
format.

In AHEX format, the field is composed of characters in a string encoded as hex digit
pairs. On output, hex digits are output in uppercase; on input, uppercase and lowercase
are both accepted. The default output format is A format with half the input width.

6.7.5 Scratch Variables

Most of the time, variables don’t retain their values between cases. Instead, either they’re
being read from a data file or the active dataset, in which case they assume the value read,
or, if created with COMPUTE or another transformation, they’re initialized to the system-
missing value or to blanks, depending on type.

However, sometimes it’s useful to have a variable that keeps its value between cases. You
can do this with LEAVE (see Section 11.22 [LEAVE], page 107), or you can use a scratch
variable. Scratch variables are variables whose names begin with an octothorpe (‘#).

Chapter 6: The PSPP language 41

Scratch variables have the same properties as variables left with LEAVE: they retain their
values between cases, and for the first case they are initialized to 0 or blanks. They have
the additional property that they are deleted before the execution of any procedure. For
this reason, scratch variables can’t be used for analysis. To use a scratch variable in an
analysis, use COMPUTE (see Section 12.3 [COMPUTE], page 115) to copy its value into an
ordinary variable, then use that ordinary variable in the analysis.

6.8 Files Used by PSpP

PSPP makes use of many files each time it runs. Some of these it reads, some it writes, some
it creates. Here is a table listing the most important of these files:

command file

syntax file These names (synonyms) refer to the file that contains instructions that tell
pspp what to do. The syntax file’s name is specified on the PSPP command
line. Syntax files can also be read with INCLUDE (see Section 17.15 [INCLUDE],
page 237).

data file = Data files contain raw data in text or binary format. Data can also be embedded
in a syntax file with BEGIN DATA and END DATA.

listing file One or more output files are created by PSPP each time it is run. The output files
receive the tables and charts produced by statistical procedures. The output
files may be in any number of formats, depending on how PSPP is configured.

system file
System files are binary files that store a dictionary and a set of cases. GET and
SAVE read and write system files.

portable file
Portable files are files in a text-based format that store a dictionary and a set
of cases. IMPORT and EXPORT read and write portable files.

6.9 File Handles

A file handle is a reference to a data file, system file, or portable file. Most often, a file
handle is specified as the name of a file as a string, that is, enclosed within ‘>’ or ‘"’.

A file name string that begins or ends with ‘|’ is treated as the name of a command to pipe
data to or from. You can use this feature to read data over the network using a program such
as ‘curl’ (e.g. GET ’ |curl -s -S http://example.com/mydata.sav’), to read compressed
data from a file using a program such as ‘zcat’ (e.g. GET ’ |zcat mydata.sav.gz’), and for
many other purposes.

PSPP also supports declaring named file handles with the FILE HANDLE command. This
command associates an identifier of your choice (the file handle’s name) with a file. Later,
the file handle name can be substituted for the name of the file. When PSPP syntax accesses
a file multiple times, declaring a named file handle simplifies updating the syntax later to
use a different file. Use of FILE HANDLE is also required to read data files in binary formats.
See Section 8.8 [FILE HANDLE], page 67, for more information.

In some circumstances, PSPP must distinguish whether a file handle refers to a system
file or a portable file. When this is necessary to read a file, e.g. as an input file for GET or

Chapter 6: The PSPP language 42

MATCH FILES, PSPP uses the file’s contents to decide. In the context of writing a file, e.g. as
an output file for SAVE or AGGREGATE, PspPP decides based on the file’s name: if it ends in
‘.por’ (with any capitalization), then PSPP writes a portable file; otherwise, PSPP writes a
system file.

INLINE is reserved as a file handle name. It refers to the “data file” embedded into the
syntax file between BEGIN DATA and END DATA. See Section 8.1 [BEGIN DATA], page 61,
for more information.

The file to which a file handle refers may be reassigned on a later FILE HANDLE command
if it is first closed using CLOSE FILE HANDLE. See Section 8.2 [CLOSE FILE HANDLE],
page 61, for more information.

6.10 Backus-Naur Form

The syntax of some parts of the PSPP language is presented in this manual using the
formalism known as Backus-Naur Form, or BNF. The following table describes BNF:

e Words in all-uppercase are PSPP keyword tokens. In BNF, these are often called ter-
minals. There are some special terminals, which are written in lowercase for clarity:

number A real number.
integer An integer number.
string A string.

var-name A single variable name.

=, /’ +a) etc.
Operators and punctuators.

The end of the command. This is not necessarily an actual dot in the
syntax file (see Section 6.2 [Commands], page 26).

e Other words in all lowercase refer to BNF definitions, called productions. These pro-
ductions are also known as nonterminals. Some nonterminals are very common, so they
are defined here in English for clarity:

var-list A list of one or more variable names or the keyword ALL.

expression
An expression. See Chapter 7 [Expressions|, page 43, for details.

4 i

e ‘::=" means “is defined as”. The left side of ‘::=" gives the name of the nonterminal
being defined. The right side of ‘: :=’ gives the definition of that nonterminal. If the
right side is empty, then one possible expansion of that nonterminal is nothing. A BNF
definition is called a production.

e So, the key difference between a terminal and a nonterminal is that a terminal cannot
be broken into smaller parts—in fact, every terminal is a single token (see Section 6.1
[Tokens], page 25). On the other hand, nonterminals are composed of a (possibly
empty) sequence of terminals and nonterminals. Thus, terminals indicate the deepest
level of syntax description. (In parsing theory, terminals are the leaves of the parse
tree; nonterminals form the branches.)

e The first nonterminal defined in a set of productions is called the start symbol. The
start symbol defines the entire syntax for that command.

43

7 Mathematical Expressions

Expressions share a common syntax each place they appear in PSPP commands. Expressions
are made up of operands, which can be numbers, strings, or variable names, separated by
operators. There are five types of operators: grouping, arithmetic, logical, relational, and
functions.

Every operator takes one or more operands as input and yields exactly one result as
output. Depending on the operator, operands accept strings or numbers as operands. With
few exceptions, operands may be full-fledged expressions in themselves.

7.1 Boolean Values

Some PSPP operators and expressions work with Boolean values, which represent true/false
conditions. Booleans have only three possible values: 0 (false), 1 (true), and system-missing
(unknown). System-missing is neither true nor false and indicates that the true value is
unknown.

Boolean-typed operands or function arguments must take on one of these three values.
Other values are considered false, but provoke a warning when the expression is evaluated.

Strings and Booleans are not compatible, and neither may be used in place of the other.

7.2 Missing Values in Expressions

Most numeric operators yield system-missing when given any system-missing operand. A
string operator given any system-missing operand typically results in the empty string.
Exceptions are listed under particular operator descriptions.

String user-missing values are not treated specially in expressions.

User-missing values for numeric variables are always transformed into the system-missing
value, except inside the arguments to the VALUE and SYSMIS functions.

The missing-value functions can be used to precisely control how missing values are
treated in expressions. See Section 7.7.4 [Missing Value Functions], page 46, for more
details.

7.3 Grouping Operators

Parentheses (‘()’) are the grouping operators. Surround an expression with parentheses to
force early evaluation.

Parentheses also surround the arguments to functions, but in that situation they act as
punctuators, not as operators.

7.4 Arithmetic Operators

The arithmetic operators take numeric operands and produce numeric results.
a+b Yields the sum of a and b.

a-b Subtracts b from a and yields the difference.

a*xb Yields the product of a and b. If either a or b is 0, then the result is 0, even if
the other operand is missing.

Chapter 7: Mathematical Expressions 44

a/b

a *xkx b

- a

Divides a by b and yields the quotient. If a is 0, then the result is 0, even if b
is missing. If b is zero, the result is system-missing.

Yields the result of raising a to the power b. If a is negative and b is not an
integer, the result is system-missing. The result of 0**0 is system-missing as
well.

Reverses the sign of a.

7.5 Logical Operators

The logical operators take logical operands and produce logical results, meaning “true or
false.” Logical operators are not true Boolean operators because they may also result in a
system-missing value. See Section 7.1 [Boolean Values], page 43, for more information.

a AND b
a&b

aOR b
alb

NOT a
~a

True if both a and b are true, false otherwise. If one operand is false, the result
is false even if the other is missing. If both operands are missing, the result is
missing.

True if at least one of a and b is true. If one operand is true, the result is true
even if the other operand is missing. If both operands are missing, the result is
missing.

True if a is false. If the operand is missing, then the result is missing.

7.6 Relational Operators

The relational operators take numeric or string operands and produce Boolean results.

Strings cannot be compared to numbers. When strings of different lengths are compared,
the shorter string is right-padded with spaces to match the length of the longer string.

The results of string comparisons, other than tests for equality or inequality, depend on
the character set in use. String comparisons are case-sensitive.

aEQ b
a=b>b
alLEb
a<=b

alLTb
a<b

aGE b
a>=»b
aGT b
a>b

aNE b
a ~=
a<>b

True if a is equal to b.

True if a is less than or equal to b.

True if a is less than b.

True if a is greater than or equal to b.

True if a is greater than b.

True if a is not equal to b.

Chapter 7: Mathematical Expressions 45

7.7 Functions

PSPP functions provide mathematical abilities above and beyond those possible using simple
operators. Functions have a common syntax: each is composed of a function name followed
by a left parenthesis, one or more arguments, and a right parenthesis.

Function names are not reserved. Their names are specially treated only when followed
by a left parenthesis, so that ‘EXP(10)’ refers to the constant value e raised to the 10th
power, but ‘EXP’ by itself refers to the value of a variable called EXP.

The sections below describe each function in detail.

7.7.1 Mathematical Functions

Advanced mathematical functions take numeric arguments and produce numeric results.

EXP (exponent) [Function]
Returns e (approximately 2.71828) raised to power exponent.

LG10 (number) [Function]
Takes the base-10 logarithm of number. If number is not positive, the result is
system-missing.

LN (number) [Function]
Takes the base-e logarithm of number. If number is not positive, the result is system-
missing.

LNGAMMA (number) [Function]

Yields the base-e logarithm of the complete gamma of number. If number is a negative
integer, the result is system-missing.

SQRT (number) [Function]
Takes the square root of number. If number is negative, the result is system-missing.

7.7.2 Miscellaneous Mathematical Functions

Miscellaneous mathematical functions take numeric arguments and produce numeric results.

ABS (number) [Function]
Results in the absolute value of number.

MOD (numerator, denominator) [Function]
Returns the remainder (modulus) of numerator divided by denominator. If numerator
is 0, then the result is 0, even if denominator is missing. If denominator is 0, the
result is system-missing.

MOD10 (number) [Function]
Returns the remainder when number is divided by 10. If number is negative,
MOD10(number) is negative or zero.

RND (number [, mult[, fuzzbits]|) [Function]
Rounds number and rounds it to a multiple of mult (by default 1). Halves are rounded
away from zero, as are values that fall short of halves by less than fuzzbits of errors
in the least-significant bits of number. If fuzzbits is not specified then the default
is taken from SET FUZZBITS (see [SET FUZZBITS]|, page 243), which is 6 unless
overridden.

Chapter 7: Mathematical Expressions 46

TRUNC (number [, mult|, fuzzbits]|) [Function]
Rounds number to a multiple of mult, toward zero. For the default mult of 1, this
is equivalent to discarding the fractional part of number. Values that fall short of a
multiple of mult by less than fuzzbits of errors in the least-significant bits of number

are rounded away from zero. If fuzzbits is not specified then the default is taken from
SET FUZZBITS (see [SET FUZZBITS], page 243), which is 6 unless overridden.

7.7.3 Trigonometric Functions

Trigonometric functions take numeric arguments and produce numeric results.

ARCOS (number) [Function]

ACOS (number) [Function]
Takes the arccosine, in radians, of number. Results in system-missing if number is
not between -1 and 1 inclusive. This function is a PSPP extension.

ARSIN (number) [Function]

ASIN (number) [Function]
Takes the arcsine, in radians, of number. Results in system-missing if number is not
between -1 and 1 inclusive.

ARTAN (number) [Function]
ATAN (number) [Function]
Takes the arctangent, in radians, of number.

COS (angle) [Function]
Takes the cosine of angle which should be in radians.

SIN (angle) [Function]
Takes the sine of angle which should be in radians.

TAN (angle) [Function]
Takes the tangent of angle which should be in radians. Results in system-missing at
values of angle that are too close to odd multiples of /2. Portability: none.

7.7.4 Missing-Value Functions

Missing-value functions take various numeric arguments and yield various types of results.
Except where otherwise stated below, the normal rules of evaluation apply within expression
arguments to these functions. In particular, user-missing values for numeric variables are
converted to system-missing values.

MISSING (expr) [Function]
When expr is simply the name of a numeric variable, returns 1 if the variable has
the system-missing value or if it is user-missing. For any other value 0 is returned.
If expr takes another form, the function returns 1 if the value is system-missing, 0
otherwise.

NMISS (expr [, expr]...) [Function]
Each argument must be a numeric expression. Returns the number of system-missing
values in the list, which may include variable ranges using the varl TO var2 syntax.

Chapter 7: Mathematical Expressions 47

NVALID (expr [, expr]...) [Function]
Each argument must be a numeric expression. Returns the number of values in the
list that are not system-missing. The list may include variable ranges using the vari
TO var2 syntax.

SYSMIS (expr) [Function]
Returns 1 if expr has the system-missing value, 0 otherwise.

VALUE (variable) [Function]

VALUE (vector(index)) [Function]

Prevents the user-missing values of the variable or vector element from being trans-
formed into system-missing values, and always results in its actual value, whether it
is valid, user-missing, or system-missing.

7.7.5 Set-Membership Functions

Set membership functions determine whether a value is a member of a set. They take a set
of numeric arguments or a set of string arguments, and produce Boolean results.

String comparisons are performed according to the rules given in Section 7.6 [Relational
Operators|, page 44. User-missing string values are treated as valid values.

ANY (value, set [, set]...) [Function]
Returns true if value is equal to any of the set values, and false otherwise. For numeric
arguments, returns system-missing if value is system-missing or if all the values in set
are system-missing. If value

RANGE (value, low, high [, 1ow, high]...) [Function]
Returns true if value is in any of the intervals bounded by low and high inclusive,
and false otherwise. low and high must be given in pairs. Returns system-missing
if any high is less than its low or, for numeric arguments, if value is system-missing
or if all the low-high pairs contain one (or two) system-missing values. A pair does
not match value if either low or high is missing, even if value equals the non-missing
endpoint.

7.7.6 Statistical Functions

Statistical functions compute descriptive statistics on a list of values. Some statistics can
be computed on numeric or string values; other can only be computed on numeric values.
Their results have the same type as their arguments. The current case’s weighting factor
(see Section 13.7 [WEIGHT], page 136) has no effect on statistical functions.

These functions’ argument lists may include entire ranges of variables using the var1 TO
var2 syntax.

Unlike most functions, statistical functions can return non-missing values even when
some of their arguments are missing. Most statistical functions, by default, require only 1
non-missing value to have a non-missing return, but CFVAR, SD, and VARIANCE require 2.
These defaults can be increased (but not decreased) by appending a dot and the minimum
number of valid arguments to the function name. For example, MEAN.3(X, Y, Z) would
only return non-missing if all of ‘X’, ‘Y’, and ‘Z’ were valid.

Chapter 7: Mathematical Expressions 48

CFVAR (number, number]|, . ..]) [Function]
Results in the coefficient of variation of the values of number. (The coefficient of
variation is the standard deviation divided by the mean.)

MAX (value, value], ...]) [Function]
Results in the value of the greatest value. The values may be numeric or string.

MEAN (number, number], . ..]) [Function]
Results in the mean of the values of number.

MEDIAN (number, number]|, . ..]) [Function]
Results in the median of the values of number. Given an even number of nonmissing
arguments, yields the mean of the two middle values.

MIN (number, number], .. .]) [Function]
Results in the value of the least value. The values may be numeric or string.

SD (number, number], . . .]) [Function]
Results in the standard deviation of the values of number.

SUM (number, number], . ..]) [Function]
Results in the sum of the values of number.

VARIANCE (number, number], .. .]) [Function]
Results in the variance of the values of number.

7.7.7 String Functions

String functions take various arguments and return various results.

CONCAT (string, string], ...]) [Function]
Returns a string consisting of each string in sequence. CONCAT("abc", "def",

"ghi") has a value of "abcdefghi". The resultant string is truncated to a maximum
of 32767 bytes.

INDEX (haystack, needle) [Function]

RINDEX (haystack, needle) [Function]
Returns a positive integer indicating the position of the first (for INDEX) or last (for
RINDEX) occurrence of needle in haystack. Returns 0 if haystack does not contain
needle. Returns 1 if needle is the empty string.

INDEX (haystack, needles, needle_len) [Function]

RINDEX (haystack, needle, needle_len) [Function]
Divides needles into multiple needles, each with length needle_len, which must be a
positive integer that evenly divides the length of needles. Searches haystack for the
occurrences of each needle and returns a positive integer indicating the byte index of
the beginning of the first (for INDEX) or last (for RINDEX) needle it finds. Returns 0
if haystack does not contain any of the needles, or if needles is the empty string.

LENGTH (string) [Function]
Returns the number of bytes in string.

Chapter 7: Mathematical Expressions 49

LOWER (string) [Function]
Returns a string identical to string except that all uppercase letters are changed
to lowercase letters. The definitions of “uppercase” and “lowercase” are system-

dependent.
LPAD (string, length[, padding]) [Function]
RPAD (string, length|, padding]) [Function]

If string is at least length bytes long, these functions return string unchanged. Oth-
erwise, they return string padded with padding on the left side (for LPAD) or right
side (for RPAD) to length bytes. These functions report an error and return string
unchanged if length is missing or bigger than 32767.

The padding argument must not be an empty string and defaults to a space if not
specified. If its length does not evenly fit the amount of space needed for padding,
the returned string will be shorter than length.

LTRIM (string|, padding]) [Function]

RTRIM (string[, padding]) [Function]
These functions return string, after removing leading (for LTRIM) or trailing (for
RTRIM) copies of padding. If padding is omitted, these functions remove spaces (but
not tabs or other white space). These functions return string unchanged if padding
is the empty string.

NUMBER (string, format) [Function]
Returns the number produced when string is interpreted according to format specifier
format. If the format width w is less than the length of string, then only the first
w bytes in string are used, e.g. NUMBER("123", F3.0) and NUMBER("1234", F3.0)
both have value 123. If w is greater than string’s length, then it is treated as if
it were right-padded with spaces. If string is not in the correct format for format,
system-missing is returned.

REPLACE (haystack, needle, replacement|, n]) [Function]
Returns string haystack with instances of needle replaced by replacement. If nonneg-
ative integer n is specified, it limits the maximum number of replacements; otherwise,
all instances of needle are replaced.

STRING (number, format) [Function]
Returns a string corresponding to number in the format given by format specifier
format. For example, STRING(123.56, F5.1) has the value "123.6".

STRUNC (string, n) [Function]
Returns string, first trimming it to at most n bytes, then removing trailing spaces
(but not tabs or other white space). Returns an empty string if n is zero or negative,
or string unchanged if n is missing.

SUBSTR (string, start) [Function]
Returns a string consisting of the value of string from position start onward. Returns
an empty string if start is system-missing, less than 1, or greater than the length of
string.

Chapter 7: Mathematical Expressions 50

SUBSTR (string, start, count) [Function]
Returns a string consisting of the first count bytes from string beginning at position
start. Returns an empty string if start or count is system-missing, if start is less
than 1 or greater than the number of bytes in string, or if count is less than 1.
Returns a string shorter than count bytes if start + count - 1 is greater than the
number of bytes in string. Examples: SUBSTR("abcdefg", 3, 2) has value "cd";
SUBSTR("nonsense", 4, 10) has the value "sense".

UPCASE (string) [Function]
Returns string, changing lowercase letters to uppercase letters.

7.7.8 Time & Date Functions

For compatibility, PSPP considers dates before 15 Oct 1582 invalid. Most time and date

functions will not accept earlier dates.

7.7.8.1 How times & dates are defined and represented

Times and dates are handled by PSPP as single numbers. A time is an interval. PSPP
measures times in seconds. Thus, the following intervals correspond with the numeric
values given:

10 minutes 600
1 hour 3,600
1 day, 3 hours, 10 seconds 97,210
40 days 3,456,000

A date, on the other hand, is a particular instant in the past or the future. PSPP
represents a date as a number of seconds since midnight preceding 14 Oct 1582. Because
midnight preceding the dates given below correspond with the numeric PSPP dates given:

15 Oct 1582 86,400
4 Jul 1776 6,113,318,400
1 Jan 1900 10,010,390,400
1 Oct 1978 12,495,427,200

24 Aug 1995 13,028,601,600

7.7.8.2 Functions that Produce Times

These functions take numeric arguments and return numeric values that represent times.

TIME.DAYS (ndays) [Function]
Returns a time corresponding to ndays days.

TIME.HMS (nhours, nmins, nsecs) [Function]
Returns a time corresponding to nhours hours, nmins minutes, and nsecs seconds.
The arguments may not have mixed signs: if any of them are positive, then none may
be negative, and vice versa.

7.7.8.3 Functions that Examine Times
These functions take numeric arguments in PSPP time format and give numeric results.

CTIME.DAYS (time) [Function]
Results in the number of days and fractional days in time.

Chapter 7: Mathematical Expressions 51

CTIME.HQOURS (time) [Function]
Results in the number of hours and fractional hours in time.

CTIME.MINUTES (time) [Function]
Results in the number of minutes and fractional minutes in time.

CTIME.SECONDS (time) [Function]
Results